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Production of the X�3872� in B-Meson Decay by the Coalescence of Charm Mesons
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If the recently discovered charmonium state X�3872� is a loosely bound S-wave molecule of the
charm mesons �D0D�0 or �D�0D0, it can be produced in B-meson decay by the coalescence of charm
mesons. If this coalescence mechanism dominates, the ratio of the differential rate for B� ! �D0D�0K�

near the �D0D�0 threshold and the rate for B� ! XK� is a function of the �D0D�0 invariant mass and
hadron masses only. The identification of the X�3872� as a �D0D�0/ �D�0D0 molecule can be confirmed by
observing an enhancement in the �D0D�0 invariant mass distribution near the threshold. An estimate of
the branching fraction for B� ! XK� is consistent with observations if X has quantum numbers JPC �
1�� and if J= ���� is one of its major decay modes.
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The recent unexpected discovery of a narrow charmo-
nium resonance near 3.87 GeVchallenges our understand-
ing of heavy quarks and QCD. This mysterious state
X�3872� was discovered by the Belle Collaboration in
electron-positron collisions through the B-meson decay
B� ! K�X followed by the decay X ! J= ���� [1].
The discovery was confirmed by the CDF Collaboration
using proton-antiproton collisions [2]. The X is much
narrower than all other charmonium states above the
threshold for decay into a pair of charm mesons. Its
mass is also extremely close to the threshold for decay
into the charmed mesons �D0D�0 or �D�0D0.

The proposed interpretations of the X�3872� include a
D-wave charmonium state with quantum numbers JPC �
2�� or 2��, an excited P-wave charmonium state with
JPC � 1�� or 1��, a ‘‘hybrid charmonium’’ state in
which a gluonic mode has been excited, and a
�D0D�0/ �D�0D0 molecule [3–13]. The possibility that

charm mesons might form molecular states was consid-
ered some time ago [14–16]. If the binding is due to pion
exchange, the most favorable channels are S wave with
quantum numbers JPC � 1�� or P wave with 0�� [3].
The proximity of the mass of X to the �D0D�0 threshold
indicates that it is extremely loosely bound. If X is an
S-wave �D0D�0= �D�0D0 molecule, the tiny binding energy
introduces a new length scale, the �D0D�0 scattering
length a, that is much larger than other QCD length
scales. As a consequence, certain properties of the
X/ �D0D�0/ �D�0D0 system are determined by a and are
insensitive to the shorter distance scales of QCD. This
phenomenon is called low-energy universality.

A challenge for any interpretation of the X�3872� is to
explain its production rate. This could be problematic for
the identification of X as an S-wave �D0D�0/D0 �D�0 mole-
cule, because it can readily dissociate due to its tiny
binding energy. One way to produce X is to produce �D0

and D�0 with small enough relative momentum that they
0031-9007=04=93(16)=162001(4)$22.50 
can coalesce into X. An example is the decay ��4S� !
Xhh0, where h and h0 are light hadrons, which can proceed
through the coalescence into X of charm mesons from the
2-body decays of a virtual B and a virtual �B. Remarkably,
low-energy universality determines the decay rate for this
process in terms of hadron masses and the width 
B of the
B meson [17]. Unfortunately, the rate is suppressed by a
factor of �
B=mB�

2 and is many orders of magnitude too
small to be observed.

In this Letter, we apply low-energy universality to the
discovery mode B� ! XK� and to the process B� !
�D0D�0K�. We point out that the interpretation of X as

an S-wave �D0D�0/ �D�0D0 molecule can be confirmed by
observing a peak in the �D0D�0 invariant mass distribution
near the �D0D�0 threshold in the decay B� ! �D0D�0K�.
We also estimate the branching fraction for B� ! XK�.
The estimate is compatible with observations if X has
quantum numbers JPC � 1�� and if J= ���� is one of
its major decay modes.

The mass of the X has been measured to be mX �
3872:0� 0:6� 0:5 MeV by Belle [1] and 3871:4� 0:7�
0:4 MeV by CDF [2]. It is extremely close to the �D0D�0

threshold 3871:2� 0:7 MeV. The binding energy is Eb �
�0:5� 0:9 MeV. If the state is bound, Eb is positive, so it
is likely to be less than 0.4 MeV. This is the smallest
binding energy of any S-wave two-hadron bound state.
The next smallest is the deuteron, a proton-neutron state
with binding energy 2.2 MeV. For two hadrons whose low-
energy interactions are mediated by pion exchange, the
natural scale for the binding energy of a molecule is
m2
�=�2��, where � is the reduced mass of the two had-

rons. For a �D0D�0 molecule, this scale is about 10 MeV, so
Eb is at least an order of magnitude smaller than the
natural low-energy scale.

If the binding energy of X is so small, low-energy
universality implies that the X/ �D0D�0/ �D�0D0 system has
properties that are determined by the �D0D�0 scattering
2004 The American Physical Society 162001-1



FIG. 1. Feynman diagram for B� ! XK� via the first path-
way.
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length a and are insensitive to the shorter distance scales
of QCD. The universal binding energy of the molecule is

Eb 
 mD �mD� �mX ’ �2�a2��1; (1)

where � � mDmD�=�mD �mD� � is the reduced mass of
the �D0 and D�0. The universal normalized momentum-
space wave function at relative momentum k� m�,

 �k� ’ �8�=a�1=2�k2 � 1=a2��1; (2)

was used by Voloshin to calculate the momentum distri-
butions for the decays X ! �D0D0�0 and X ! �D0D0� [6].
The universal �D0D�0 elastic scattering amplitude at rela-
tive momentum kcm � m� is

A  �D0D�0 ! �D0D�0� ’
8�mDmD�

���1=a� ikcm�
; (3)

where kcm � 2��E�mD �mD� ��1=2 and E is the total
energy in the center-of-momentum frame. The amplitude
A �D�0D0 ! �D0D�0� for scattering to the CP conjugate
state differs by the charge conjugation C � � of the
channel with the large scattering length. Another conse-
quence of low-energy universality is that, as the binding
energy Eb decreases, the probabilities for components of
the wave function other than �D0D�0 and �D�0D0 decrease
as E1=2

b [9]. In the limit Eb ! 0, the state becomes
�j �D�0D0i � j �D0D�0i�=

���
2

p
if C � �. The rates for decays

that do not correspond to the decay of a constituentD�0 or
�D�0 also decrease as E1=2

b . This suppression may explain
the surprisingly narrow width of the X.

The decay B� ! XK� proceeds through the weak
decay �b! �ccs at very short distances. The subsequent
formation of XK� is a QCD process that involves mo-
menta k as low as 1=a. The contributions from k� 1=a
are constrained by low-energy universality, but those
from k * m� involve the full complications of low-
energy QCD. We analyze the decay B� ! XK� by sepa-
rating short-distance effects involving k * m� from
long-distance effects involving k� 1=a. The decay can
proceed via the short-distance 3-body decay B� !
�D0D�0K� followed by the long-distance coalescence pro-

cess �D0D�0 ! X. It can also proceed through a second
pathway consisting of B� ! �D�0D0K� followed by
D0 �D�0 ! X. The amplitude for the first pathway can be
expressed as

A1B
� ! XK�� �� i

XZ d4‘

�2��4
AB� ! �D0D�0K��

�D�q� ‘;mD�D�q� � ‘;mD� �

�A �D0D�0 ! X�; (4)

where q � �mD=mX�Q and q� � �mD�=mX�Q are 4-
momenta that add up to the 4-momentum Q of X and
D�p;m� � �p2 �m2 � i���1. The sum is over the spin
states of the D�0. This amplitude can be represented by
the Feynman diagram with meson lines shown in Fig. 1.
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We constrain the loop integral to the small momentum
region by imposing a cutoff j‘j<� in the rest frame of
the virtual D0 and �D�0. The natural scale for the cutoff is
��m�. The amplitude for �D0D�0 to coalesce into X is
determined by the �D0D�0 scattering length a as follows:

A  �D0D�0 ! X� � �16�ZmXmDmD�=�2a�1=2��X � �;

(5)

where �X and � are the polarization vectors of X and D�0

and Z is the probability for the X to be in a �D0D�0= �D�0D0

state. At the �D0D�0 threshold, the amplitude for B� !
�D0D�0K� is constrained by Lorentz invariance to have

the form

A B� ! �D0D�0K�� � c1P � ��; (6)

where P is the 4-momentum of the B meson and c1 is a
constant. The amplitude for B� ! �D�0D0K� has the
same form with c1 replaced by a constant c2. In the
�D0D�0 rest frame, the integral over ‘0 of the two propa-

gators in (4) is proportional to the momentum-space wave
function of X. The subsequent integral over ‘ is linear in
the ultraviolet cutoff � for the low momentum region

Z d4‘

�2��4
D�q� ‘;mD�D�q

0 � ‘;mD� � �
i��

4�2mDmD�

:

(7)

The total amplitude from the two pathways is

A B� ! XK��

� ��ZmX=�
3mDmD�a�1=2�c1 � c2��P � ��X:

(8)

The sign � corresponds to the charge conjugation C � �
of X. Heavy-quark spin symmetry implies c1 � c2 up to
corrections suppressed by a factor �QCD=mD. The inter-
ference is constructive if C � � and destructive if C �
�. The dependence of the loop amplitude (8) on � is
canceled by a tree diagram with a B� XK contact inter-
action whose coefficient therefore depends linearly on �.
If the X is predominantly a �DD� molecule, there must be
some value �1 of the ultraviolet cutoff for which the loop
amplitude dominates over the tree amplitude. Squaring
162001-2
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the amplitude, summing over spins, and integrating over
phase space, the final result for the decay rate is

B� ! XK�� �
Z!3=2�mB;mX;mK�

64�4m3
Bm

2
X�a

jc1 � c2j2�2
1; (9)
5

where !�x; y; z� � x4 � y4 � z4 � 2�x2y2 � y2z2 � z2x2�.
Because of the factor 1=a, the decay rate scales like
E1=2
b as Eb ! 0.
If another hadronic state H is close enough to the

�D0D�0 threshold that X has a nonnegligible probability
ZH of being in the state H, the decay can also proceed
through a short-distance 2-body decay B� ! HK�. In
this case, there is an additional term AB� ! HK��Z1=2

H
in (8). Its contribution to the decay rate also scales like
E1=2
b asEb ! 0, because ZH scales like E1=2

b [9]. IfC � �,
one possibility for such a state is the excited P-wave
charmonium state &c1�2P�. Recent coupled-channel cal-
culations of the charmonium spectrum suggest that
&c1�2P� is likely to be well above the �D0D�0 threshold
[12]. We will henceforth assume that �D0D�0/ �D�0D0 is the
only important component of the wave function and set
Z � 1.

We can calculate the differential decay rate for B� !
�D0D�0K� in the same way. There are again two pathways:

the short-distance decay B� ! �D0D�0K� followed by
the long-distance scattering �D0D�0 ! �D0D�0 and B� !
�D�0D0K� followed by �D�0D0 ! �D0D�0. The amplitude

for the first pathway can be represented by the Feynman
diagram with meson lines shown in Fig. 2. The calcula-
tion of the amplitude is similar to that for B� ! XK�

except that it involves the scattering amplitude (3) instead
of the coalescence amplitude (5). In the loop amplitude
for B� ! �D0D�0K�, we keep only the term (6) that is
nonzero at the �D0D�0 threshold. There must be some value
�2 of the ultraviolet cutoff for which the loop amplitude
dominates over the tree amplitude. The factor c1 � c2
cancels in the ratio between the amplitudes for B� !
�D0D�0K� and B� ! XK�. Our final expression for the

differential decay rate is
FIG. 2. Feynman diagram for B� ! �DD�0K� via the first
pathway.
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d

dM �DD�

B� ! �D0D�0K��

� 
B� ! XK��
�2

2

�2
1

�a3kcm
��1� a2k2cm�

; (10)

where M �DD� is the �D0D�0 invariant mass and kcm is the
relative momentum in the �D0D�0 rest frame:

kcm � !1=2�M �DD� ; mD;mD� �=�2M �DD� �: (11)

In (10), we have neglected terms suppressed by k2cm=m2
D.

The invariant mass distribution is illustrated in Fig. 3 for
several values of the binding energy Eb. The distributions
are normalized to one at kcm � m�. As the binding energy
is tuned toward 0, the peak value scales like E�1=2

b and the
position of the peak in M �DD� � �mD �mD� � scales like
Eb. The observation of such an enhancement near the
�D0D�0 threshold would confirm the interpretation of X as

a �D0D�0= �D�0D0 molecule.
The BABAR Collaboration has recently measured the

branching fractions for B� to decay into �D0D0K�,
�D0D�0K�, �D�0D0K�, and �D�0D�0K� to be �0:19�
0:03�%, �0:47� 0:07�%, �0:18� 0:07�%, and �0:53�
0:11�%, respectively [18]. We use these measurements to
estimate the branching fraction for B� ! XK�. We make
the simplifying assumption that the decay amplitude
factors into currents �c���1� �5�b and �s���1� �5�c.
Heavy-quark symmetry can then be used to express the
3-body double-charm decay amplitudes in terms of two
functions G1�q2� and G2�q2�, where q2 is the invariant
mass of the hadrons produced by the �s���1� �5�c cur-
rent [19]. For example, the amplitudes for decays into
�D0D�0K� and �D�0D0K� are

AB� ! �D0D�0K��

��iG1�� � �V�v�

� i�G2=mB���+v� � k�V�v�+�v� � �V�v�k+

� i�+�,-�V�v��v�,k-�; (12)
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FIG. 3. The �D0D�0 invariant mass distribution for B� !
�D0D�0K� for three different values of the binding energy of
X. The distributions are normalized to one at kcm � m�.
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AB� ! �D�0D0K��

� i�G1v� �G2k�=mB���+�1� v� � V�g�+

� v�� V+ � i��+,-v�,V-�; (13)

where k is the 4-momentum of the K� and V, v�, and v
are the 4-velocities of the B�, �D�0 or D�0, and D0 or �D0,
respectively. As a further simplification, we approximate
G1 and G2 by constants. The resulting expressions for the
3-body double-charm decay rates are


B� ! �D0D0K��

� 10�3 MeV178:9jG1j
2 � 51:8Re�G�

1G2�

� 4:37jG2j
2�; (14)


B� ! �D0D�0K��

� 10�3 MeV49:6jG1j
2 � 2:61Re�G�

1G2�

� 3:49jG2j
2�; (15)


B� ! �D�0D0K��

� 10�3 MeV52:5jG1j
2 � 1:87Re�G�

1G2�

� 2:31jG2j
2�; (16)


B� ! �D�0D�0K��

� 10�3 MeV221:5jG1j
2 � 74:8Re�G�

1G2�

� 11:58jG2j
2�: (17)

We obtain a good fit to the BABAR branching fractions
with G1 � 3:2� 10�6 and G2 � ��14:6� 9:6i� � 10�6.
In the corner of phase space where the 4-velocities of �D0

and D�0 are equal, the amplitudes (12) and (13) reduce to
the form on the right side of (6) with coefficients c1 �
c2 � �iG1=mB � iG2�mB �mD �mD� �=m2

B. If X has
charge conjugation C � �, the estimate (9) reduces to

B B� ! XK�� � �2:6� 10�5�
�2

1

m2
�

�
Eb

0:4MeV

�
1=2
: (18)

If C � �, the branching fraction would be significantly
smaller because of destructive interference between c1
and c2. We could get a more reliable result for the nu-
merical prefactor in (18) by relaxing the factorization
assumption and carrying out a Dalitz plot analysis of
the 3-body decays. Since the result depends quadratically
on the ultraviolet cutoff �1, the best we can do is obtain
an order-of-magnitude estimate of the branching fraction
by setting �1 � m�.

The Belle Collaboration measured the product of the
branching fractions BB� ! XK�� and BX !
J= ����� to be �1:3� 0:3� � 10�5 [1]. Our estimate of
BB� ! XK�� is compatible with this result if
J= ���� is one of the major decay modes of X. The
experimental upper bound on the width of X�3872� is

X < 2300 keV. The sum of the widths for decay into

VOLUME 93, NUMBER 16
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�D0D0�0 and �D0D0� approaches 
D�0� � 50 keV in the
limit Eb ! 0 [6]. The remaining partial widths scale as
E1=2
b . Using a coupled-channel calculation in a model in

which X mixes with J= /, the decay rate for J= ����

has been estimated to be 1290 keV for Eb � 0:7 MeV [11].
Thus it is at least plausible that J= ���� is one of the
major decay modes. Other possible decay channels are
0c��, radiative transitions to charmonium states, and c �c
annihilation decays.

We have calculated the decay rate for B� ! XK� and
the differential decay rate for B� ! �D0D�0K� near the
�D0D�0 threshold under the assumption that X�3872� is a

loosely bound S-wave �D0D�0/D0 �D�0 molecule and that its
production rate is dominated by the coalescence of charm
mesons. Observation of a sharp peak in the �D0D�0 invari-
ant mass distribution near threshold in the decay B� !
�D0D�0K� would confirm the interpretation of X as a
�D0D�0 molecule. Our order-of-magnitude estimate of

the branching fraction for B� ! XK� is compatible
with observations if X�3872� has quantum numbers
JPC � 1�� and if J= ���� is one of its major decay
modes.
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