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Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done
using rotating strings with two angular momenta. We show that such a test can be described more
generally as the agreement between two actions: one a low energy description of a spin chain appearing
in the field theory side, and the other a limit of the string action in AdS5 � S5. This gives a map between
the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows
how a string action can emerge from a gauge theory in the large-N limit.

DOI: 10.1103/PhysRevLett.93.161602 PACS numbers: 11.25.Tq, 11.15.–q, 75.10.Pq
A few years ago, Maldacena [1] proposed an equiva-
lence between string theory propagating in anti de Sitter
(AdS) space and a particular conformal field theory
(CFT): a gauge theory known as N � 4 super Yang-
Mills theory (N � 4 SYM for short). Therefore this
correspondence, usually known as the AdS/CFT corre-
spondence, promised to reveal the deep relation between
gauge theory and string theory that was conjectured to
exist in ’t Hooft’s large-N limit [2]. In a recent paper [3],
Berenstein, Maldacena, and Nastase (BMN) made the
first steps in that direction by showing that certain op-
erators in the boundary theory corresponded to string
excitations in the bulk. It was later observed that such
relation followed from a more general relation between
semiclassical rotating strings in the bulk [4] and certain
operators in the boundary. A lot of activity followed those
papers and many new rotating solutions were found [5]. In
a parallel development, Minahan and Zarembo [6] ob-
served that the one-loop anomalous dimension of opera-
tors composed of scalars in N � 4 SYM theory follows
from solving an integrable spin chain [25]. Subsequently
[8], much attention was devoted to the subset of operators
given by

O J1;J2 � TrZZXZXX . . .ZX; (1)

where the right-hand side contains and arbitrary permu-
tation containing a number J1 of X’s and J2 of Z’s. Here we
denote X � �1 � i�2; Z � �3 � i�4, and �a; a �
1 . . . 6 are the adjoint scalars of N � 4. There are as
many such operators as different permutations of the X
and Z one can make up to cyclic permutations. In the free
theory all these operators have conformal dimension
�0 � J1 � J2 � J. The one-loop anomalous dimension
can be obtained from the 1-loop dilatation operator
which, acting on these operators, takes the form (in the
large-N limit) [9]:

D1�loop � ~	
XJ
i�1

�
1

4
� ~Si ~Si�1

�
;

with ~	 �
	

4�2 �
g2
YMN

4�2 :

(2)
0031-9007=04=93(16)=161602(4)$22.50 
To apply D1�loop to OJ1;J2 , one should consider OJ1;J2 as a
spin 1=2 chain identifying, e.g., X with a spin down state
j#i and Z with a spin up j"i:

ZZXZXX . . .ZX() j""#"## . . . "#i: (3)

After this identification, the spin operators ~S act in the
usual manner. The trace in (1) implies that we have to
consider periodic chains ( ~SJ�1 � ~S1) and zero momen-
tum states, i.e., invariant under cyclic permutations. Thus,
the computation of one-loop anomalous dimensions re-
duces to the diagonalization of a spin 1=2 ferromagnetic
Heisenberg chain of length J and coupling constant ~	.
The authors of [10] used Bethe ansatz techniques as in
[6,8] to obtain an operator, linear combination of the
OJ1;J2 , whose one-loop anomalous dimension � �
�1�

J1

J2
� 	J precisely agreed with the first subleading term

in the large J expansion of the energy of a rotating string
[10] E � J� �1�

J1

J2
� 	J �O�	

2

J3�. More precisely this is an
expansion valid for J ! 1 keeping 	

J2 fixed and small. The

fact that the nontrivial function �1�
J1

J2
� is the same on both

sides of the correspondence is the main result of [10] and
was further discussed in [14] following [12,13].

Here we go one step further and show that the spin
chain system, in the limit we are interested in, is de-
scribed by a sigma model which precisely agrees with the
sigma model obtained from the rotating string in the
same limit. The identification then goes beyond a particu-
lar solution and gives a precise mapping of the states since
we show that the mean value of the spin at a given site is
the same as the position of the string in the bulk. That is,
an operator, linear combination of the OJ1;J2 is equivalent
to a state of the spin chain that we can map into a string
configuration making the identification complete.

Heisenberg chain.—The Heisenberg model (2) has been
studied over the years (see, e.g., [15]) as an example of
ferro and anti-ferro magnetism and as a test bed for new
theoretical developments. Using coherent states it can be
written in a path integral formulation [16]. In the case of
spin � 1

2 , the coherent states, labeled by two angles� and
�, are defined as j ~ni � eiSz�eiSy�j"i where ~n is a unit
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vector with components ~n � �sin� cos�; sin� sin�; cos��
and j"i is the state with Sz�

1
2 . A path integral represen-

tation for transition amplitudes can be derived with an
action

S�
1

2

XJ
i�1

Z
dt
�Z 1

0
d� ~ni � �@t ~ni�@� ~ni��

~	
8
� ~ni� ~ni�1�

2

�
:

(4)

The first term is a Wess-Zumino term proportional to the
area spanned between the trajectory and the North Pole.
Its definition requires the introduction of an additional
coordinate � with ��� � 1� � 0. Since this action is
linear in time derivatives, near the ground state the
dispersion relation is quadratic (!� k2) as is known to
be for ferromagnetic magnons. In our case this is the
BMN limit of operators (1) where �� n2.

Therefore, for long chains, the low energy states can be
described as long wavelength spin waves. Thus, one can
consider the continuum limit of (4) and use a continuous
coordinate ! running from 0 to J. The action, in terms of
angles, becomes

S � �
Z
dt

Z J

0
d!

�
1

2
cos�@t��

~	
8

�
�@!��

2

� sin2��@!��
2

��
: (5)

From here we obtain the momentum, Hamiltonian and
momentum density in direction !:

P � � Sz � �
1

2

Z J

0
cos�d!; (6)

H �
~	
8

Z J

0
d!��@!��2 � sin2��@!��2�; (7)

P �
Z J

0
T01d! � �

1

2

Z J

0
cos�@!� � 0; (8)

where the last equality is a condition on the solutions
corresponding to taking operators invariant under cyclic
permutations.

In the continuum limit, the action is not renormalized
because the Wess-Zumino term is topological and the
coupling constant is fixed by comparing small fluctua-
tions with the exact result for spin waves with only one
spin down.

To compare with [10], we should take the limit J ! 1
keeping 	=J2 fixed which can be more easily understood
[17] by rescaling ! into �! � 2�

J !. The action is obtained
from (5) through the replacementZ J

0
d!! J

Z 2�

0

d �!
2�

; ~	 �
	

4�2 !
	

J2 : (9)

Since 	=J2 is kept fixed, the action can be written as S �
J �S where �S is fixed and we take J ! 1. The path integral
is then dominated by the saddle points and so, in this
161602-2
limit we only need to consider classical solutions. As a
check, we find now a particular classical solution with a
given value of Sz � �J2 � J1�=2 and compare with [10]
where the Bethe ansatz was used instead. The equations
of motion are

sin�@t��
~	
2
@!�sin2�@!�� � 0; (10)

sin�@t��
~	
2
@2
!��

~	
2

sin� cos��@!��
2 � 0; (11)

with periodic boundary conditions in ! 2 �0; J�. Now we
can make the ansatz @!� � 0 which trivially satisfies the
zero momentum condition (8). Equation (10) implies that
@t� � 0 and (11) that @2

t � � 0. So we can put @t� � w
and have to solve @2

!��
2w
~	

sin� � 0. This integrates to

@!� � �
																							
a� b cos�

p
, with b � 4w

~	
and a is a constant of

integration. If b > jaj, at �0 � arccos��a=b� the square
root becomes zero and we can change branches, namely,
the ‘‘particle’’ returns oscillating between ��0 < �< �0.
We concentrate on this solution and leave the case a > jbj
for the interested reader.

For that solution we compute the angular momenta and
energy as:

Sz � �2
Z �0

0

cos�d�																							
a� b cos�

p � �2

			
2

b

s
f2E�x� � K�x�g;

J �
Z J

0
d! � 4

Z �0

0

d�																							
a� b cos�

p � 4

			
2

b

s
K�x�;

E �
~	
2

Z �0

0

a� b cos�																							
a� b cos�

p d� �
~	
8
�aJ � 2bSz�;

(12)

with x � a�b
2b . The integrals were evaluated in terms of

elliptic integrals [18] (We follow [10] which uses x rather
than

			
x

p
as the argument of the elliptic integrals). Finally,

using that Sz �
J2�J1

2 , simple algebra leads to

J2

J
� 1 �

E�x�
K�x�

; (13)

� � E � 8
~	
J
K�x��E�x� � �1 � x�K�x��: (14)

If we now replace from (2), ~	! 	=4�2 we get, for � �
	
J �1�

J1

J2
�, exactly the same result as in [10] (see eq. (2.7)

there).
More interestingly, at a fixed instant in time, when

sigma is varied, the end point of ~n goes from � � 0 to � �
�0 and back, then to the other side. Furthermore, each
point is precessing around the z axis with the same
angular velocity w. So the configuration looks exactly
like a folded rotating string.

Rotating string.—The rotating string solutions corre-
sponding to the operators discussed in the previous sec-
tion were found in [11]. The relevant part of the metric in
161602-2
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the coordinates used in that paper is

ds2 � �dt2 � d�2
�3�

� �dt2 � d 2 � cos2 d�2
1 � sin2 d�2

2: (15)

Changing coordinates to

�1 � t� ’1 � ’2; �2 � t� ’1 � ’2

we get a metric

ds2 � 2dtd’1 � 2dt cos�2 �d’2 � d 2 � d’2
1

�d’2
2 � 2 cos�2 �d’1d’2: (16)

After making the gauge choice t � -., the Polyakov
action describing a string in this background becomes:

S �
R2

4�00

Z
G23@.X

2@.X
3 �G23@!X

2@!X
3 (17)

�
R2

4�00

Z
2-� _’1�cos�2 � _’2�� _ 2� _’2

1� _’2
2

�2cos�2 � _’1 _’2� 
02�’02

1 �’02
2 �2cos�2 �’0

1’
0
2;

(18)

where we denote derivatives with respect to . with a dot
and those with respect to ! with a prime. The Virasoro
constraints are:

G23@.X2@!X3 � 2-�’0
1 � cos�2 �’0

2� �
_  0 � _’1’0

1

� _’2’0
2 � 2 cos�2 � _’1’0

2

�2 cos�2 � _’2’
0
1

� 0; (19)

and

G23@.X
2@.X

3 �G23@!X
2@!X

3 �

2-� _’1 � cos�2 � _’2� � _ 2 � _’2
1 � _’2

2�

2 cos�2 � _’1 _’2 �  02 � ’02
1 � ’02

2 �

2 cos�2 �’0
1’

0
2 � 0; (20)

where we have also used the gauge choice t � -.. Up to
now we did not do any approximation. Comparing with
the large angular momentum limit of the solution in [11],
we see that the motion of the string is mainly captured by
the rotation we just did through the change of coordinates.
We assume then that all time derivatives are small. In
particular, if all time derivatives are zero, we get a BPS
state corresponding to a massless point like string mov-
ing around a circle. From the action and the constraints
one sees that a nontrivial limit is obtained by taking, for
all coordinates X2:

_X 2 ! 0; -! 1; with - _X2 fixed: (21)

Since J� - this is a large angular momentum limit
similar to the BMN limit [3,26], but since we take the
161602-3
limit in the action and not in the metric, we keep inter-
actions such as 2 cos�2 �’0

1’
0
2 which do not appear in the

BMN case.
In the limit (21), the action reduces to

S �
R2

4�00

Z
f2-� _’1 � cos�2 � _’2� �  02 � ’02

1 � ’02
2

�2 cos�2 �’0
1’

0
2g; (22)

and the constraints become

2-�’0
1 � cos�2 �’0

2� � 0; (23)

2-� _’1 � cos�2 � _’2��

 02 � ’02
1 � ’02

2 � 2 cos�2 �’0
1’

0
2 � 0 (24)

We can use any of them to eliminate ’1. That we get the
same result using one or the other is guaranteed by the
equations of motion. The only point is that, since the
string is closed, ’1 is a periodic function of sigma imply-
ing 0 �

R
d!’0

1 � �
R
d! cos�2 �’0

2, which, as we will
see below is condition (8).

Replacing the first constraint in the action we get

S �
R2

4�00

Z
2- _’1 � 2 cos�2 �- _’2 �  02 � sin2�2 �’02

2 ;

(25)

which already looks quite similar to the sigma model we
had before. To make the agreement precise we first com-
pute the angular momentum

J � P’1
�

R2

4�00
2-

Z 2�

0
d! �

Z J

0
d~!; (26)

where we defined

~! �
R2

4�00
2-!; (27)

so that the length of the chain is J as before. To compare
the energies we rescale . into t � -.. Also, one can see
that the angles are related by ’2 � � 1

2�; � 1
2 �.

Finally if we use the AdS/CFT relation R2=00 �
				
	

p

and drop the total derivative - _’1, we get the action

S � �
Z
dtd~!

�
1

2
cos�@t��

	

32�2 ��@!��
2

� sin2��@!��2�
�
; (28)

which precisely agrees with (5). The identification of the
angles implies that we can map directly a configuration
~n�!� into a particular shape of the string in the bulk
regardless if it is a solution or not. Since ~n is the average
value of the spin at a site, h ~nj ~Sj ~ni � 1

2 ~n one can identify
the average value of the spin with the position of the
corresponding portion of the string in the bulk.
However, this also implies that, if we look at the string
161602-3
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carefully enough, we will see the discrete nature of the
spin chain.

The agreement between (5) and (28) is our main result.
We can go a bit further if we consider the two-loop
dilatation operator [9]

D2�loops �
	2

128�4

�
�

3

2
J� 8

X
k

~Sk ~Sk�1 � 2
X
k

~Sk ~Sk�2

�
:

(29)

Replacing ~Si !
1
2 ~ni and Taylor expanding n in the con-

tinuum limit we get a sigma model which is quartic in
derivatives. For slowly varying fields ~n, since the length of
the chain is J, we estimate that @! ~n�

1
J . For the one-loop

term this gives �1 � 	
R
�@! ~n�2 � 	J 1

J2 �
	
J as we ob-

tained before. At two-loops we have �2 � 	2
R
@2
! ~n@2

! ~n�
	2

J3 as we expect if the BMN limit is well defined.
Similarly, at higher loops, the full dilatation operator, in
the long wavelength limit, should have the schematic
expansion

D � J� SWZ

�
Z J

0
d!

X
p1;...;pl

	p1�����plCp1;...;pl@
p1
! ~n . . . @pl! ~n: (30)

Another situation that can be interesting to consider is
finite temperature when the spin chain disorders. Since the
expectation value of the spin gives the position of the
string in space time, a disordered state looks in space time
as a random walk which could be describing strings near
or above the Hagedorn temperature.

In summary, we have used spin chains to describe a
precise map between operators in a four dimensional
gauge theory and string configurations. Although we
were able to do this for a particular setup and a subset
of operators, at least in principle, the same methods
should be useful to derive string duals for other field
theories even when the resulting string action does not
correspond to a critical superstring. In this respect, many
interesting theories do not have scalar fields in the adjoint
but similar operators can be constructed using covariant
derivatives and the gauge field strength.
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