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Construction of Non-Abelian Walls and their Complete Moduli Space
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We present a systematic method to construct exactly all Bogomol’nyi-Prasad-Sommerfield multiwall
solutions in supersymmetric U�NC� gauge theories in five dimensions with NF hypermultiplets in the
fundamental representation for infinite gauge coupling. The moduli space of these non-Abelian walls is
found to be the complex Grassmann manifold SU�NF�

SU�NC��SU�NF�NC��U�1�
endowed with a deformed metric.
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In constructing unified theories with extra dimensions
[1] it is crucial to obtain topological defects and local-
ization of massless or nearly massless modes on the
defect. Walls in five-dimensional theories are the simplest
of the topological defects leading to the four-dimensional
world volume. In constructing topological defects,
supersymmetry, (SUSY) theories are helpful, since
partial preservation of SUSY automatically gives a solu-
tion of equations of motion [2]. These states are called
Bogomol’nyi-Prasad-Sommerfield (BPS) states. The
minimum number of supercharges in five dimensions is
eight. Wall solutions in the U�1� gauge theory, which can
be called Abelian walls, have been discussed with eight
SUSY [3–7]. Walls in non-Abelian gauge theories have
been considered in a special circumstance recently [8].
Non-Abelian solitons admitting ample moduli space
structure were discovered already except for walls, and
beautiful methods are available for the construction of
instantons, monopoles, and vortices [9]. In this Letter, we
give a systematic method to construct walls in non-
Abelian gauge theories, called non-Abelian walls, with
the gauge group U�NC� and NF�>NC� copies of hyper-
multiplets in the fundamental representation. We also find
the complete moduli space for non-Abelian walls, which
fills the last gap in soliton moduli spaces in the gauge-
Higgs system.

We shall denote the gauge group by the uppercase suffix
C, and the flavor group by F. The U�NC� vector multiplets
contain gauge fields WM, and a real scalar field �, which
are in the adjoint representation of U�NC�. We use an
NC � NC matrix notation for these component fields,
like � � �ITI. Here we have denoted the Hermitian
generators in the Lie algebra by TI�I � 0; 1; 2; � � � ; N2

C �
1�, satisfying the normalization condition; Tr�TITJ� �
1
2	IJ, where T0 is the generator of the factor U�1� gauge
group. The U�1� part of vector multiplets allows the
Fayet-Illiopoulos (FI) term, which gives rise to discrete
vacua once mass terms for hypermultiplets are intro-
duced. Dynamical bosons of hypermultiplets are the
SU�2�R doublet of complex scalar quark fields HirA. We
denote space-time indices by M;N; � � � � 0; 1; 2; 3; 4, and
SU�2�R doublet indices by i. The color indices r; s; � � � run
over 1; 2; � � � ; NC, whereas A;B; � � � � 1; 2; � � � ; NF stand
0031-9007=04=93(16)=161601(4)$22.50 
for flavor indices. It is convenient to combine the NF

hypermultiplets in the fundamental representation into
an NC � NF matrix Hi with components �Hi�rA � HirA.

We shall consider a model with minimal kinetic terms
for vector and hypermultiplets. The eight SUSY allow
only a few parameters in our model: the masses of the
Ath hypermultiplet mA, the SU�2�R triplet of FI parame-
ters ca�a � 1; 2; 3� for the U�1� vector multiplet, and a
gauge coupling constant g for the U�NC� gauge group.
Different gauge couplings for U�1� and SU�NC� factors
can easily be incorporated, but the difference becomes
irrelevant for infinite gauge coupling which we will be
most interested in. After eliminating the auxiliary fields,
the bosonic part of our Lagrangian reads

L � �
1

2g2
Tr�FMN�W�FMN�W�	 


1

g2
Tr�DM�DM��


�DMHirA�
yDMHirA � V; (1)

where the scalar potential V is given by

V �
g2

4
Tr����a�jiH

iHyj � ca1NC�
2	


HyirA����mA�
2	rsHisA: (2)

Here a sum over repeated indices is implied, covari-
nt derivatives are defined by DMHirA � �@M	rs 

iWI

M�TI�
r
s	HisA, DM��@M�
 i�WM;�	, and the gauge

field strength is defined by FMN�W� � �i�DM;DN	. Our
convention of metric is �MN � diag�
1;�1;�1;�1;
�1�. In this Letter, we assume nondegenerate mass pa-
rameters mA, which we arrange mA >mA
1 for all A. Our
results should be valid for the degenerate mass case also,
except for subtleties associated with global symmetry.
Since U�1�F corresponding to a common phase is gauged,
the flavor symmetry reduces to U�1�NF�1

F . The SU�2�R
symmetry allows us to choose the FI parameters to lie
in the third direction without loss of generality as ca �
�0; 0; c� with c > 0.

Let us discuss the vacuum structure of this model.
Since we assume nondegenerate masses for hypermul-
tiplets, we find that only one flavor A � Ar (Ar � As;,
for r � s) can be nonvanishing for each color component
r of hypermultiplet scalars HirA with
2004 The American Physical Society 161601-1
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H1rA �
���
c
p
	ArA; H2rA � 0: (3)

Here we used global gauge transformations to eliminate
possible phase factors. This is called the color-flavor lock-
ing vacuum. The vector multiplet scalars � are deter-
mined as

� � diag�mA1
; mA2

; � � � ; mANC
�: (4)

We denote a SUSY vacuum specified by a set of non-
vanishing hypermultiplet scalars with the flavor fArg for
each color component r as hA1A2 � � �ANC

i. Since global
gauge transformations can exchange flavors Ai and Aj for
the color component i and j, respectively, the ordering of
the flavors A1; � � � ; ANC

does not matter in considering
only vacua: h1; 2; 3i � h2; 1; 3i. Thus a number of SUSY
vacua is given by NF!=��NF � NC�!NC!	 �NF

CNC
and we

usually take A1 < A2 < � � �<ANC
. Multiwalls are classi-

fied by topological sectors that are defined by giving two
vacua at y � �1.

Let us obtain the BPS equations for domain walls
interpolating between two SUSY vacua. We require for
wall solutions that all fields depend only on the coordi-
nate of the extra dimension y � x4. We also assume the
Poincaré invariance on the four-dimensional world vol-
ume of the wall, implyingWM � 0 for the indicesM � y.
Note that Wy need not vanish. We demand that half of
SUSY defined by !4"i � �i��3�ij"

j be conserved [7].
Requiring the SUSYtransformation of fermions to vanish
along the above SUSY directions, we find the following
BPS equations for domain walls in the matrix notation

D y� �
g2

2
�c1NC

�H1H1y 
H2H2y�; (5)

0 � g2H1H2y; (6)

D yH
1���H1
H1M; DyH

2��H2�H2M; (7)

where we have used the NF � NF Hermitian mass matrix
M defined by �M�AB � mA	AB.

If a wall configuration approaches a SUSY vacuum
hA1A2 � � �ANC

i at y � 
1, and hB1B2 � � �BNC
i at y �

�1, the topological sector of the configuration is labeled
by hA1A2 � � �ANC

i  hB1B2 � � �BNC
i. By either perform-

ing the Bogomol’nyi completion of the energy density E
or applying the BPS equations, we obtain the bound for
the energy of the configuration

Z 
1
�1

Edy � c�Tr���	
1�1 � c

 XNC

k�1

mAk �
XNC

k�1

mBk

!
: (8)

BPS walls saturate the bound.
Let us construct solutions for BPS Eqs. (5)–(7). To

this end, it is convenient to introduce an NC � NC inver-
tible complex matrix function S�y� 2 GL�NC;C� defined
by [10]
161601-2
�
 iWy � S�1@yS: (9)

Note that the above differential equation determines the
matrix function S except for N2

C complex integration
constants which cause an ambiguity for S. Without any
assumption, the BPS Eqs. (6) and (7) dictate

H1 � S�1H0eMy; H2 � 0: (10)

HereH0 is an arbitrary complex constantNC � NF matrix
which we call the ‘‘moduli matrix’’. We will postpone
detailed proof (includingH2 � 0), for a subsequent paper.
The remaining BPS equation (5) for the vector multiplets
can be written in terms of the matrix S and the moduli
matrix H0. Equation (9) implies that the gauge trans-
formations on the original fields �;Wy;H1,

H1!H10 �UH1;

�
 iWy!�0 
 iW0y�U��
 iWy�U
y
U@yU

y
(11)

can be obtained by a right multiplication of a unitary
matrix Uy on S:

S! S0 � SUy; UyU � 1 (12)

without causing any transformations on the moduli ma-
trix H0. Therefore we obtain gauge invariant quantity �
out of S defined by

� � SSy: (13)

Together with the gauge invariant moduli matrix H0, the
BPS Eq. (5) can be rewritten in the following gauge
invariant form

@2y�� @y���1@y� � g2�c��H0e2MyH
y
0 �: (14)

With a suitable gauge choice, we obtain uniquely the
NC � NC complex matrix S from the NC � NC

Hermitian matrix �. Therefore, once a solution of �
for Eq. (14) with a given moduli matrix H0 is obtained,
the matrix S can be determined and then, all the quanti-
ties, �; Wy, and H1 are obtained by Eqs. (9) and (10). We
find by explicit examples that gauge field Wy and/or � are
nontrivial unlike Abelian walls.

Given the boundary conditions at both infinities y �
�1, the differential Eq. (14) is expected to give a solu-
tion without further integration constants. Therefore the
moduli matrixH0 alone should describe the entire moduli
space of walls. Equation (14) is, however, difficult to solve
explicitly for finite gauge couplings g.We consider, there-
fore, the case of the infinite gauge coupling (g2 !1),
where Eq. (14) for the gauge invariant � reduces to an
algebraic equation, given by

�g!1 � �SSy�g!1 � c�1H0e2MyH
y
0 : (15)

Therefore we can explicitly construct wall solutions in
the infinite gauge coupling without solving the differen-
161601-2
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tial equation for �. This explicit solution shows clearly
that the moduli space is fully covered by our moduli
matrix H0. In this limit our model reduces to a hyper-
Kähler nonlinear sigma model (NLSM) whose target
space is the cotangent bundle over the complex
Grassmann manifold T�� SU�NF�

SU�NC��SU�NF�NC��U�1�
	 [11]. For

this NLSM, our construction exhausts all possible BPS
wall solutions. The NLSM has been known to be dual
under NC $ NF � NC with NF fixed. We find duality
transformations of moduli matrix H0 explicitly. For the
non-Abelian gauge theory in Eqs. (1) and (2), it is likely
that one needs to consider finite gauge couplings, espe-
cially if one is interested in quantum effects. The BPS
domain walls in theories with eight SUSY were first
obtained in hyper-Kähler NLSMs [3]. They have been
the only known examples for eitght SUSY models until
exact wall solutions at finite gauge coupling were found
recently [6,7]. In [7] we have constructed exact wall
solutions for finite gauge couplings in the case of NC �
1 and NF � 3 to find that their qualitative behavior is the
same as the infinite gauge coupling cases found in [4]. We
expect that the moduli space of walls at finite gauge
couplings should be qualitatively the same as that at
infinite gauge coupling. In the rest of this Letter we
examine moduli matrix H0 irrespective of finite or infi-
nite gauge coupling.

From Eqs. (9) and (10), we find that the same original
fields �; Wy;H1 given by a set of matrix function S and
constant moduli matrix H0 are described by another set
�S0; H00�, transformed by V 2 GL�NC;C�,

S! S0 � VS; H0 ! H00 � VH0: (16)

We call this global ‘‘world-volume symmetry’’, which
comes from the N2

C integration constants in solving (9).
This transformation V defines an equivalence class
among sets of matrix function S and moduli matrix H0.
We thus find the moduli space for multiwall solutions
(without specifying boundary conditions) denoted by
MNF;NC

is the complex Grassmann manifold:

M NF;NC
� fH0jH0 � VH0; V 2 GL�NC;C�g

� GNF;NC

’
SU�NF�

SU�NC� � SU�NF � NC� � U�1�
; (17)

whose complex dimension is given byNC�NF � NC�. This
is a compact (closed) set. On the other hand, for instance,
scattering of two Abelian walls is described by a NLSM
on a noncompact moduli space [4,7]. We also find similar
noncompact moduli by an explicit analysis of multiple
non-Abelian walls. These two facts can be consistently
understood if we note that the moduli space MNF;NC

includes all topological sectors determined by the differ-
161601-3
ent boundary conditions as we show in the rest of this
Letter.

The moduli matrix H0 contains complete data of walls
including boundary conditions, number of walls, wall
position, etc., Boundary conditions at y � �1 are most
conveniently read by the following fixing of world-
volume symmetry (16) :

where all elements in the rth row before the Arth flavor are
eliminated, the Arth flavor is normalized to be unity, and
the last nonvanishing element evr (vr 2 C) in the rth row
resides in the Brth flavor. We can choose these flavors
Ar; Br to be ordered as

1 � A1 <A2 < � � �< ANC
� NF; (19)

Ar � Br; Br � Bs; for r � s: (20)

When the set of flavors fBrg are not ordered like fArg in
Eq. (19), we must eliminate some more elements to re-
move the redundancy. This can be done in a well-defined
procedure. We call the fixing (18) a ‘‘standard form’’.
Since this fixing of the symmetry (16) is unique, any
moduli matrix in the standard form has one-to-one cor-
respondence with a point in the moduli space. If the
moduli matrix happens to be HrA

0 �
���
c
p
	ArA, Eqs. (10)

and (15) imply the vacuum hA1A2 � � �ANC
i:H1rA�y� ����

c
p
	ArA. Note that the solution H1 in Eq. (10) implies

the transformation of the moduli matrix, H0 ! H0eMy0 ,
under a translation y! y
 y0. Since the world-volume
symmetry (16) allows us to multiply the matrix �V�rs �
e�mAry0	rs from the left of H0, the standard form (18) and
the ordering of masses imply that the matrix �VH0e

My0�rA

remains finite when taking the limit y0 ! 1 to give���
c
p
	ArA. Thus the configuration reduces to the vacuum

labeled by hA1A2 � � �ANC
i. Similarly, with another ma-

trix �V�rs � e�mBry0�vr	rs, we obtain �VH0e
My0�rA !���

c
p
	BrA in the limit of y0 ! �1. Therefore the multi-

wall configuration described by the standard form (18)
belongs to the topological sector labeled by
hA1A2 � � �ANC

i  hB1B2 � � �BNC
i.

A topological sector consists of all permutations of the
vacuum labels B1; B2; � � � ; BNC

at y � �1. If the label
hB1B2 � � �BNC

i happens to be ordered, B1 <B2 < � � �<
BNC

, then the moduli matrix H0 covers generic points of
the topological sector. Hence the real dimension of the
topological sector is given by 2�

PNC
i�1 Bi �

PNC
i�1 Ai�. Half

of these moduli parameters represent wall positions and
the rest are (quasi-)Nambu-Goldstone modes of inter-
nal symmetry. The topological sector with the largest
161601-3
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dimension is labeled by h1; 2; � � � ; NCi  hNF � NC 

1; � � � ; NF � 1; NFi. If the label hB1B2 � � �BNC

i is not or-
dered,H0 has smaller dimensions as is described below in
Eq. (20). We can understand this fact by noting that some
walls are compressed into each other to become a single
‘‘compressed wall’’.

By the above observation, we find that the Grassmann
manifold is decomposed into

M NF;NC
�
X
BPS

M
hA1A2���ANC i hB1B2���BNC i
NF;NC

; (21)

where M
hA1A2���ANC i hB1B2���BNC i
NF;NC

denotes the moduli sub-
space of BPS multiwall solutions for the topological
sector of hA1A2 � � �ANC

i  hB1B2 � � �BNC
i. Note that it

also includes the vacuum states with no walls
hA1A2 � � �ANC

i  hA1A2 � � �ANC
i, which correspond to

NFCNC
points on the moduli space. Although each sector

(except for vacuum states) is in general an open set, the
total space is compact. We call MNF;NC

the ‘‘total moduli
space’’. This fact is in interesting contrast to cases of other
solitons like instantons, vortices, and monopoles, since
the dimension of the total moduli spaces is infinite in the
latter cases.

Effective Lagrangians on walls can be obtained by
promoting the moduli parameters to fields on the world
volume of walls [12]. The world-volume symmetry (16)
naturally becomes a local gauge symmetry. Denoting the
moduli fields by * in H0�*�, we obtain the Kähler metric
on the total moduli space. By using explicit solutions for
infinite gauge coupling, its Kähler potential is given by

K�*;*�� � c
Z
dy log�det��*;*�; y�	: (22)

The metric (22) is not symmetric under SU�NF� but
admits an isometry U�1�NF�1. Therefore the total moduli
space is a deformed Grassmann manifold.

The total moduli space GNF;NC
is a special Lagrangian

submanifold of the Higgs branch of vacua T�GNF;NC
of

this theory. We anticipate that this is always true for
arbitrary gauge groups with arbitrary matter contents.
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