Mass Measurement on the *rp*-Process Waiting Point ⁷²Kr

D. Rodríguez,^{1,*} V. S. Kolhinen,² G. Audi,³ J. Äystö,² D. Beck,¹ K. Blaum,^{1,4} G. Bollen,⁵ F. Herfurth,¹ A. Jokinen,² A. Kellerbauer,⁴ H.-J. Kluge,¹ M. Oinonen,⁶ H. Schatz,^{5,7} E. Sauvan,^{4,†} and S. Schwarz⁵

¹GSI, Planckstraße 1, 64291 Darmstadt, Germany ²University of Jyväskylä, P.O. Box 35, 40351 Jyväskylä, Finland ³CSNSM-IN2P3-CNRS, 91405 Orsay-Campus, France ⁴CERN, Physics Department, 1211 Geneva 23, Switzerland

⁵NSCL and Dept. of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA

⁶Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland

⁷Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824-1321, USA

(Received 19 June 2004; published 14 October 2004)

The mass of one of the three major waiting points in the astrophysical rp process 72 Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of $\delta m/m = 1.2 \times 10^{-7}$ ($\delta m = 8$ keV). 73,74 Kr, also needed for astrophysical calculations, were measured with more than 1 order of magnitude improved accuracy. We use the ISOLTRAP masses of $^{72-74}$ Kr to reanalyze the role of 72 Kr ($T_{1/2} = 17.2$ s) in the rp process during x-ray bursts and conclude that 72 Kr is a strong waiting point delaying the burst duration with at least 80% of its β -decay half-life.

DOI: 10.1103/PhysRevLett.93.161104 PACS numbers: 26.30.+k, 21.10.Dr, 27.50.+e, 32.10.Bi

Masses are among the most critical nuclear parameters in nucleosynthesis calculations in astrophysics [1]. Here we address the rapid proton capture process (rp process)that powers type I x-ray bursts [1–3]. In this scenario, within 10-100 s, hydrogen and helium are fused explosively into heavy elements up to Te. The nuclear energy release typically reaches 10^{32} – 10^{33} J and generates a bright x-ray burst. The energy generation is dominated by the rp process, a sequence of rapid proton captures interrupted by slow β^+ decays (waiting points) near the proton drip line when further proton captures are counteracted by (γ, p) photodisintegration of weakly proton bound, or proton unbound nuclei. The waiting points delay the nuclear energy release and therefore directly affect the burst shape and duration [4–8]. Brown et al. [6] demonstrated that current mass uncertainties for neutron deficient nuclei around the three major waiting points ⁶⁴Ge, ⁶⁸Se, and ⁷²Kr lead to large uncertainties in calculations of x-ray burst light curves. Woosley et al. [7] came to similar conclusions with a more complex x-ray burst model. Clearly such mass uncertainties are currently the biggest obstacle in the interpretation of the stream of new observational data on x-ray bursts that is now obtained with satellites such as RXTE, Chandra, or XMM-Newton. For example, Galloway et al. [9] attempt to extract critical information on the system parameters of the x-ray burster GS 1826-24 from the analysis of long term x-ray burst profile changes that are orders of magnitude smaller than the light curve shape uncertainties from nuclear physics.

In this Letter, we address the mass uncertainty affecting the waiting point 72 Kr by precision mass measurements of $^{72-74}$ Kr with the ISOLTRAP mass spectrometer

[10-12], located at the ISOLDE facility [13] at CERN/ Geneva (Switzerland). The critical parameter for modeling the x-ray burst light curve is the effective lifetime of ⁷²Kr in the stellar environment. The ⁷²Kr lifetime is the time it takes for an arbitrary initial abundance to drop by 1/e. It is determined by the rates of β^+ decay and proton capture processes. ⁷³Rb has been shown to be particle unbound [14,15] and therefore a local (p, γ) - (γ, p) equilibrium between ⁷²Kr and ⁷³Rb is established. The lifetime reduction of ⁷²Kr through proton capture depends then exponentially on the mass difference between ⁷²Kr and ⁷³Rb and linearly on the proton capture rate of ⁷³Rb [1]. However, in the rp process peak temperatures can become sufficiently high for (γ, p) photodisintegration of the proton bound nucleus ⁷⁴Sr to drive ⁷²Kr, ⁷³Rb, and ⁷⁴Sr into a local (p, γ) - (γ, p) equilibrium. For the highest temperatures the lifetime reduction of ⁷²Kr through proton capture therefore depends exponentially on the mass difference between 72 Kr and 74 Sr and linearly on the β^+ decay rate of ⁷⁴Sr [1]. Thus, accurate masses of ⁷²Kr, ⁷³Rb, and ⁷⁴Sr are required. We address this need by measuring the ⁷²⁻⁷⁴Kr masses and use fairly accurate theoretical Coulomb shifts to get the masses of ⁷³Rb and ⁷⁴Sr.

In the experiments described here, the radioactive Kr isotopes (72,73,74 Kr) were produced in spallation reactions as a result of bombarding either a ZrO_2 or a Nb foil target with the intense high-energy proton beam from the CERN PS-Booster accelerator. A short pulse of 3.2×10^{13} protons with an energy of 1.4 GeV impinged on the target every 2.4 s. Since water cooling was used in the transfer line between target and ion source, mainly volatile elements, e.g., noble gases were transported into the plasma ion source biased at 60 kV. The High Resolution

Separator was used with a mass resolving power typically of $R \approx 6000$, helping in suppressing isobaric beam contaminations.

The ISOLTRAP system is shown in Fig. 1. It consists of three different traps: a buffer-gas-filled linear Paul trap (rfq structure) [11], a gas-filled cylindrical Penning trap (Purification trap) [16], and a hyperbolic Penning trap in high vacuum (Measurement trap) [10].

The 60-keV ISOLDE beam is electrostatically retarded to a few tens of eV and stopped in the buffer-gas-filled linear Paul trap. There, the ions are cooled by collisions with ≈ 0.5 Pa helium buffer gas. After an accumulation time varying from 3 ms (for 74 Kr) up to 50 ms (for 72 Kr), the cooled ion bunch is ejected with a temporal width of less than 1 μ s and an emittance of less than 10π mm mrad at 2.8 keV transfer energy.

The ion bunches are transported and captured in the helium-buffer-gas-filled cylindrical purification Penning trap. This trap uses a mass-selective buffer-gas cooling technique for isobaric cleaning of the injected ion bunch [17]. In the ⁷²Kr experiment this trap was operated with a resolving power of 16000. After the isobaric cleaning, the ions are ejected and transferred to the precision Penning trap where the actual mass measurement is carried out by the determination of the cyclotron frequency $\nu_c = qB/(2\pi m)$ of stored ions with mass m and charge q in a homogeneous magnetic field B. The ions' cyclotron frequency ν_c is probed by exciting the ions' motion by a radio frequency signal (rf) and measurement of the time of flight to the Micro-Channel-Plate detector MCP5 [18]. Repeating this for different rf frequencies and measuring the time of flight as a function of the rf frequency, yields a time-of-flight cyclotron resonance curve as shown for ⁷²Kr⁺ in the inset of Fig. 1. The magnetic field calibration

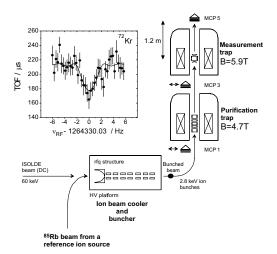


FIG. 1. Sketch of the ISOLTRAP setup. MCP detectors are used to observe the ion beam transfer and to measure the time of flight (MCP5). The inset shows a time-of-flight cyclotron resonance of ⁷²Kr with a fit of the theoretical line shape [28] to the data points.

B is performed by a determination of the cyclotron frequency of a reference ion ν_c^{ref} with well-known mass both before and after the measurements of the cyclotron frequency of the ion of interest. The value adopted for the cyclotron frequency of the reference ion ν_c^{ref} is the result of the linear interpolation of both measurements (before and after) to the center of the time interval during which the cyclotron frequency of the ion of interest was measured.

The presence of contaminating ions in the measurement trap, produced either in the ISOLDE plasma ion source or created by charge exchange in the ISOLTRAP preparation traps, induces a shift in the cyclotron frequency of the ion of interest. This shift can be corrected for by applying a count-rate analysis [19]. The systematic uncertainties to be added to the uncertainties resulting from the measurements are outcomes from previous measurements carried out with carbon cluster cross reference measurements [20]. This set of measurements led to a relative uncertainty limit of 8×10^{-9} , which is quadratically added to the other uncertainties to get the final value [19].

The atomic mass is determined from the measured ion cyclotron frequencies via the relationship

$$m_{\text{atom}} = r(m_{\text{atom}}^{\text{ref}} - m_e) + m_e, \tag{1}$$

where r is the cyclotron frequency ratio between the reference ion and the ion of interest obtained in the experiment, m_e is the electron mass, and $(m_{\text{atom}}^{\text{ref}} - m_e)$ is the reference ion mass.

In this experiment the masses of $^{72}{\rm Kr^+}$, $^{73}{\rm Kr^+}$, and $^{74}{\rm Kr^+}$ were measured directly. A test ion source provided the reference isotope $^{85}{\rm Rb^+}$, which has a relative mass uncertainty of 2×10^{-10} [21]. The measurements on the krypton isotopes were performed by using excitation times $T_{\rm rf}$ of 300 or 400 ms. The cyclotron frequency linewidth $\Delta\nu_c({\rm FWHM})$ is about $1/T_{\rm rf}$, thus resulting in resolving powers $m/\Delta m({\rm FWHM})$ of about 5×10^5 for singly charged ions. The excitation time for the stable reference ion $^{85}{\rm Rb^+}$ was $T_{\rm rf}=1.2$ s.

The resulting ratios for the cyclotron frequencies are given in Table I. The table also gives the mass excess values $D = m_{\text{atom}} - A$ u resulting from the experiments reported here, where A is the atomic mass number, and compares it with those given in the literature [24] published prior to our experiments.

For rp-process model calculations the masses of 72 Kr, 73 Rb, and 74 Sr are important. The mass of 72 Kr was directly determined in this work (see Table I). For 73 Rb and 74 Sr, we determine the mass excess from our measured masses of the isospin mirrors 73 Kr and 74 Kr (Table I) and using the Coulomb shifts calculated by Brown *et al.* [6]. We obtain $D(^{73}$ Rb) = -45.94(10) MeV and $D(^{74}$ Sr) = -40.83(10) MeV, against the previous values -46.27(17) MeV and -40.67(12) MeV [6]. The

161104-2

TABLE I. Frequency ratios $v_c^{\rm ref}/v_c$ relative to $^{85}{\rm Rb}^+$ and mass excesses (*D*) for $^{72,73,74}{\rm Kr}$. The experimental mass excesses ($D_{\rm exp}$) are determined from the cyclotron frequency ratios using $m(^{85}{\rm Rb})=84.911\,789\,738(12)$ u [21], $m_e=0.000\,548\,579\,911\,0(12)$ u [22] and 1 u = 931 494.009(7) keV [23]. $D_{\rm lit}$ are the AME values from 1995 [24]. The half-lives $T_{1/2}$ are taken from [25].

Nuclide	$T_{1/2}$	$ u_{ m c}^{ m ref}/ u_{ m c}$	$D_{\rm exp}~({\rm keV})$	D_{lit} (keV)	$D_{\text{new}} - D_{\text{lit}} \text{ (keV)}$
⁷² Kr	17.2(3) s	0.847 255 827(101)	-53940.6(8.0)	-54110(270)	159
⁷³ Kr	27.0(1.2) s	0.858 999 8172(830)	-56551.7(6.6)	-56890(140)	338
⁷⁴ Kr	11.5(1) min	0.8707037406(262)	-62332.0(2.1)	-62170(60)	-162

new uncertainties are entirely determined by the estimated uncertainty for the Coulomb shifts of 100 keV [6]. With these values we obtain proton separation energies of -0.71(10) MeV for 73 Rb and of 2.18(10) MeV for 74 Sr.

To evaluate the impact of the new mass values on x-ray burst models we calculate the 72 Kr effective lifetime as a function of temperature for a typical density of 10^6 g/cm³ and a solar hydrogen abundance. For each temperature, we solve the system of differential equations for the abundances of 72 Kr, 73 Rb, and 74 Sr for constant temperature and density as a function of time. We take into account proton capture on 72 Kr and 73 Rb, (γ, p) photodisintegration on 73 Rb and 74 Sr as well as β^+ decay of 72 Kr, 73 Rb, and 74 Sr.

Proton capture rates were the same as in Schatz *et al.* [5] and were calculated with the statistical Hauser-Feshbach code NONSMOKER [26]. The inverse photodisintegration rates $\lambda_{(\gamma,p)}$ were calculated from the capture rates $\langle \sigma v \rangle_{(p,\gamma)}$ and the new reaction Q values using detailed balance [1]:

$$\lambda_{(\gamma,p)} = \frac{2G_f}{G_i} \left(\frac{\mu kT}{2\pi\hbar^2}\right)^{3/2} e^{-Q/kT} < \sigma v >_{(p,\gamma)}, \quad (2)$$

where G_i and G_f are the partition functions of the initial and final nuclei for proton capture, μ is the reduced mass for proton capture, k is the Boltzmann constant, and T the temperature. We neglect in this analysis the impact of the new masses on the recalculation of the NONSMOKER proton capture rates. This is justified as the effect is small compared to the exponential mass dependence of Eq. (2). Our results for the lifetime of ⁷²Kr are shown in Fig. 2 as upper and lower limits taking into account our new, much improved mass uncertainties. For comparison, Fig. 2 also shows the ⁷²Kr effective lifetime limits based on the previously known mass data from the AME95 [24]. For low and high temperatures, proton captures are negligible and the lifetime is entirely given by the β^+ decay. The reason is that for low temperatures, proton captures are too slow while for high temperatures, photodisintegration is too strong. For intermediate temperatures, however, a lifetime reduction due to proton capture can in principle occur, depending on the assumed Q values.

As Fig. 2 shows, our new mass measurements strongly reduce the *O*-value induced uncertainty in the ⁷²Kr

rp-process lifetime. For the proton capture rates used here we can now exclude the order of magnitude reduction in lifetime around typical x-ray burst peak temperatures of 1–1.5 GK. This is consistent with constraints on the proton separation energy of ⁷³Rb derived from its non-observation in radioactive beam experiments together with assumptions on its production cross section [14]. These constraints can be translated into a lower lifetime limit also displayed in Fig. 2.

In short, our mass measurements show that when using NONSMOKER proton capture rates the 72 Kr lifetime in the rp process will always be within 80% of its β^+ half-life. In most models, the reduction will be less, as densities during the burst tend to drop somewhat below 10^6 g/cm³ due to expansion, and the hydrogen abundance tends to be reduced compared to the solar value at the time the reaction flow reaches 72 Kr. The nuclide 72 Kr remains, therefore, a strong waiting point in the rp process during x-ray bursts delaying energy generation with at least 80% of its β^+ decay half-life. This strengthens further the hypothesis that long burst durations imply hydrogen rich bursts with an rp process reaching the A=64–72 mass region. However, our new mass measurements suggest a

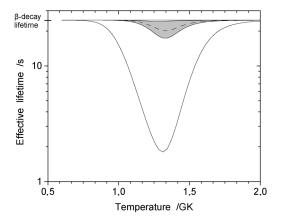


FIG. 2. The effective lifetime of 72 Kr in the stellar environment as a function of temperature for typical rp-process conditions. The lowest solid line and the highest solid line delimit the range of lifetimes within the old AME95 [24] mass uncertainties. The gray area marks the range of lifetimes within the new mass uncertainties obtained in this work. The dashed line is the lower limit from the nonobservation of 73 Rb in radioactive beam experiments.

161104-3 161104-3

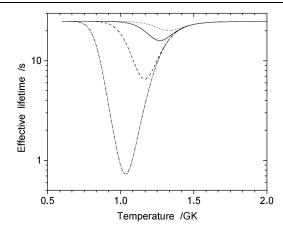


FIG. 3. The lower limit of the effective lifetime of 72 Kr as a function of temperature for typical rp-process conditions calculated with the masses of this work and taking into account the experimental nonobservation of 73 Rb. Here, the 73 Rb(p, γ) 74 Sr reaction rate has been multiplied by factors of 1 (dotted line), 5 (solid line), 100 (dashed line), and 10 000 (dotted dashed line).

fairly high proton separation energy for ⁷⁴Sr of 2.18 MeV (previously 1.69 MeV). Therefore (γ, p) photodisintegration of ⁷⁴Sr sets in at rather high temperatures around 1.3– 1.4 GK. This results in a fairly wide temperature window where it is hot enough for proton captures to matter, but where only ⁷²Kr and ⁷³Rb, and not ⁷⁴Sr, participate in the local (p, γ) - (γ, p) equilibrium. In that regime, the ⁷²Kr lifetime depends also on the 73 Rb (p, γ) reaction rate. In fact, as Fig. 3 shows, an increase of the 73 Rb (p, γ) reaction rate [5] by factors of 100 or more could entirely compensate the reduction in proton capture flow due to a more unbound ⁷³Rb. Uncertainties of many orders of magnitude cannot be entirely excluded for proton capture rates near the proton dripline, where usually a few resonances dominate (see, e.g., [27]). As a consequence of our new mass measurements we therefore have to conclude that for reliable rp-process calculations the 73 Rb $(p, \gamma)^{74}$ Sr reaction rate needs to be known to better than a factor of 2-3. This requires experimental information. As ⁷³Rb is a fast proton emitter with a lifetime of less than 24 ns the reaction rate cannot be determined directly. It would be important to measure in future experiments the masses of ⁷³Rb and ⁷⁴Sr, as well as the level structure of ⁷⁴Sr in the vicinity of the proton threshold with keV precision. For ⁷³Rb the mass could be measured using a (p,d) transfer reaction in inverse kinematics with a radioactive ⁷⁴Rb beam or β -delayed proton decay of ⁷³Sr.

H. S. acknowledges support through the Alfred P. Sloan Foundation and NSF Grants Nos. PHY 02-16783 (Joint Institute for Nuclear Astrophysics) and PHY 01-10253. G. B. and S. S. acknowledge support through NSF Grant No. PHY 01-10253. We thank B. A. Brown for providing the calculated Coulomb shifts, and F.-K. Thielemann for

providing the reaction network solver. This work was supported by the European Commission within the EUROTRAPS network under Contract No. ERBFM RXCT97-0144, the RTD project EXOTRAPS under Contract No. HPRI-CT-1998-00018, and the NIPNET network under Contract No. HPRI-CT-2001-50034.

- *Present address: IN2P3, LPC-ENSICAEN, 6 Boulevard du Marechal Juin, 14050, Caen Cedex, France. Electronic address: rodriguez@lpccaen.in2p3.fr.
- [†]Present address: IN2P3, CPPM, 13288 Marseille, France
- [1] H. Schatz et al., Phys. Rep. 294 167 (1998).
- [2] R. K. Wallace and S. E. Woosley, Astrophys. J. Suppl. Ser. 45 389 (1981).
- [3] T. E. Strohmayer and L. Bildsten, in *Compact Stellar X-ray Sources*, edited by W. H. G. Lewin and M. van der Klis (Cambridge University Press, Cambridge, England, 2003).
- [4] O. Koike, M. Hashimoto, K. Arai, and S. Wanajo, Astron. Astrophys. 342 464 (1999).
- [5] H. Schatz et al., Phys. Rev. Lett. 86 3471 (2001).
- [6] B. A. Brown et al. Phys. Rev. C 65 045802 (2002).
- [7] S. E. Woosley et al., astro-ph/0307425.
- [8] J. L. Fisker and F.-K. Thielemann, Astrophys. J. **608**, L61 (2004).
- [9] D. K. Galloway et al., Astrophys. J. 601, 466 (2004).
- [10] G. Bollen *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A 368 675 (1996).
- [11] F. Herfurth *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **469** 254 (2001).
- [12] K. Blaum *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. B **204** 478 (2003).
- [13] E. Kugler, Hyperfine Interact. 129 23 (2000).
- [14] R. Pfaff et al., Phys. Rev. C 53 1753 (1996).
- [15] A. Jokinen et al., Z. Phys. A 355 227 (1996).
- [16] H. Raimbault-Hartmann et al., Nucl. Instrum. Methods Phys. Res., Sect. B 126 378 (1997).
- [17] G. Savard et al., Phys. Lett. A 158 247 (1991).
- [18] G. Gräff, H. Kalinowsky, and J. Traut, Z. Phys. A 297 35 (1980).
- [19] A. Kellerbauer et al., Eur. Phys. J. **D22** 53 (2003).
- [20] K. Blaum et al., Eur. Phys. J. A15 245 (2002).
- [21] M. P. Bradley et al., Phys. Rev. Lett. 83 4510 (1999).
- [22] P. J. Mohr and B. N. Taylor, J. Phys. Chem. Ref. Data 28 1713 (1999).
- [23] G. Audi, Hyperfine Interact. 132 7 (2001).
- [24] G. Audi and A. H. Wapstra, Nucl. Phys. A 595 409 (1995).
- [25] G. Audi, O. Bersilon, J. Blachot, and A. H. Wapstra, Nucl. Phys. A 624 1 (1997).
- [26] T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75 1 (2000). The rates were recalculated by T. Rauscher using the masses given in the 1995 Atomic Mass Evaluation [24].
- [27] R. R. C. Clement et al., Phys. Rev. Lett. 92 172502 (2004).
- [28] M. König *et al.* Int. J. Mass Spectrom. Ion Processes **142** 95 (1995).

161104-4 161104-4