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Numerical Simulations of Generic Singularities
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Numerical simulations of the approach to the singularity in vacuum spacetimes are presented here.
The spacetimes examined have no symmetries and can be regarded as representing the general behavior
of singularities. It is found that the singularity is spacelike and that, as it is approached, the spacetime
dynamics becomes local and oscillatory.
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A longstanding problem in general relativity has been
to find the general behavior of singularities. Several re-
sults, both analytical [1] and numerical [2] have been
obtained. However, for most of the results, the spacetimes
have one or more symmetries. Only for scalar field matter
have results been found when there are no symmetries.
[3,4] For vacuum, Belinski, Lifschitz and Khalatnikov
[5] (BKL) have conjectured that the generic singularity is
local, spacelike, and oscillatory. This conjecture has been
reformulated and put more precisely by Uggla et al.[6]

In this Letter are presented numerical simulations of
the approach to the singularity in vacuum spacetimes
with no symmetries. The results support the BKL
conjecture.

The system evolved here is essentially that of refer-
ence [6] but specialized to the vacuum case and with a
slightly different choice of gauge. Here the spacetime is
described in terms of a coordinate system (t; xi) and a
tetrad (e0; e�) where both the spatial coordinate index i
and the spatial tetrad index � go from one to 3. Choose e0
to be hypersurface orthogonal with the relation between
tetrad and coordinates of the form e0 � N�1@t and e� �
e�i@i where N is the lapse and the shift is chosen to be
zero. Choose the spatial frame fe�g to be Fermi propa-
gated along the integral curves of e0. The commutators of
the tetrad components are decomposed as follows:

�e0; e�� � _u�e0 � �H��� � ��	e� (1)

and

�e�; e�� � �2a�����
� � ����n

��	e� (2)

where n�� is symmetric, and�� is symmetric and trace-
free.

Scale invariant variables are defined as follows:

f@0;@�g 
 fe0; e�g=H;
fE�i;���; A�; N��g 
 fe�i; ��; a�; n��g=H;

q� 1 
 �@0 lnH; and r� 
 �@� lnH:

(3)

Finally choose the lapse to be N � H�1. The relation
between scale invariant frame derivatives and coordinate
derivatives is @0 � @t and @� � E�i@i. From the vacuum
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Einstein equations one obtains the following evolution
equations:

@tE�
i � F�

�E�
i; (4)

@tr� � F��r� � @�q; (5)

@tA� � F��A
� �

1

2
@��

��; (6)

@t��� � �q� 2	��� � 2Nh�
�N�i� � N��Nh��i

� @ h�r�i � @h�A�i � 2rh�A�i

� ���h��@� � 2A�	N
�i
�; (7)

@tN
�� � qN�� � 2���

�N
�	� � �����@��

�	
�; (8)

and

@tq �

�
2�q� 2	 �

1

3
�2A� � r�	@� �

1

3
@�@�

�
q

�
4

3
@�r

� �
8

3
A�r� �

2

3
r�@��

�� � 2���W��:

(9)

Here angle brackets denote the symmetric trace-free part,
and F�� and W�� are given by

F�� 
 q��� ���� (10)

and

W�� 

2

3
N��N�

� �
1

3
N�

�N�� �
1

3
@�A� �

2

3
@�r�

�
1

3
�����@� � 2A�	N��: (11)

In addition to the evolution equations, the variables sat-
isfy constraint equations as follows:

0 � �Ccom	
i
�� 
 2�@�� � r�� � A��	E��

i � ����N��E�i;

(12)

0 � CG


 1�
1

3
�2@� � 2r� � 3A�	A� �

1

6
N��N��

�
1

12
�N�

�	
2 �

1

6
����

��; (13)
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0 � �CC	
�


 @��
�� � 2r� � ��

�r
� � 3A��

�� � ����N����
�;

(14)

0 � Cq 
 q�
1

3
������ �

1

3
@�r� �

2

3
A�r�; (15)

0 � �CJ	
� 
 �@� � r�	�N�� � ����A�	 � 2A�N��;

(16)

and

0 � �CW	� 
 ������@� � A�	 � N���r�: (17)

We want a class of initial data satisfying these
constraints that is general enough for our purposes but
simple enough to find numerically. We use the York
method [7] and choose H to be constant, r� and
N�� to vanish, and the following form for the other
variables: E�i � � �2=H	��i; A� � �2 �1@� , and
��� �  �6diag� ��1; ��2; ��3	. Then the constraints are sat-
isfied provided @i ��i � 0 and q � 1

3 
�12 ��i ��i and

@i@i �
1

8
H2�6 5 � ��i ��i �7	: (18)

We use the following solution for ��i

�� 1 � a2 cosy� a3 cosz� b2 � b3;
��2 � a1 cosx� a3 cosz� b1 � b3;

and ��3 � �a1 cosx� a2 cosy� b1 � b2

(19)

where the ai and bi are constants. We consider spacetimes
with topology T3  R with each spatial slice having
topology T3. In terms of the coordinates we have 0 � x �
2 with 0 and 2 identified (and correspondingly for y
and z).

The numerical method used is as follows: each spatial
direction corresponds to n� 2 grid points with spacing
dx � 2 =n. The variables on grid points 2 to n� 1 are
evolved using the evolution equations, while at points 1
and n� 2 periodic boundary conditions are imposed. The
initial data is determined once Eq. (18) is solved. This is
done using the conjugate gradient method. [8] The evo-
lution proceeds using Eqs. (4)–(9) with the exception that
the term �5� 2q	Cq is added to the right hand side of
Eq. (9) to prevent the growth of constraint violating
modes. Spatial derivatives are evaluated using centered
differences, and the evolution is done using a three step
iterated Crank-Nicholson method [9] (a type of predictor-
corrector method). In Eq. (9) the highest spatial deriva-
tive term is � 1

3@
�@�q which gives this equation the form

of a diffusion equation. Note that diffusion equations can
only be evolved in one direction in time, in this case the
negative direction which corresponds to the approach to
the singularity. Stability of numerical evolution of diffu-
sion equations generally requires a time step proportional
to the square of the spatial step. However, the constant of
proportionality depends on the coefficient of the second
spatial derivative. To ensure stability, we define Emax to be
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the maximum value of jE�ij (over all space and over all �
and i) and then define dt1 
 � 1

4 �dx=Emax	
2 and dt2 


� 1
8dx. The time step dt is then chosen to be whichever of

dt1 and dt2 has the smaller magnitude.
Before presenting numerical results, it is helpful to

consider what behavior to expect as the singularity is
approached (that is as t! �1). First denote the eigen-
values of ��

� by ��1;�2;�3	: Then suppose that at
sufficiently early times the time averages of q��i are
all positive. Then the time averages of the eigenvalues of
F�� are all positive. Since we are evolving in the negative
time direction, this should lead [through Eq. (4)] to an
exponential decrease in E�i. However, since all spatial
derivatives appear in the equations through @� � E�i@i
we would expect the spatial derivatives to become negli-
gible. That is, at each spatial point the dynamics becomes
that of a spatially homogeneous cosmology: the approach
to the singularity is local. Note that this does not mean
that the spacetime is becoming homogeneous. Spatial
variation is not becoming small; however since all spatial
derivatives appear in the evolution equations through
E�i@i and since E�i is becoming small, the effect of the
spatial derivatives on the evolution is becoming negli-
gible. The positivity of the time averages of the eigenval-
ues of F�� should also lead [through Eqs. (5) and (6)] to
exponential decrease in r� and A�. Thus we expect that as
the singularity is approached, the dynamics is described
by a much simpler version of evolution Eqs. (4)–(9) and
constraint Eqs. (12)–(17) where r� and A� and all spatial
derivatives are dropped.

This simpler set of equations describes homogeneous
cosmologies, and has been treated extensively in the
literature on such spacetimes. [5,10] Here we simply
summarize the important attributes. First, from
Eq. (14) it follows that ��

� and N�
� commute and there-

fore have a common basis of eigenvectors. From Eqs. (7)
and (8) it follows that this basis (which we will call the
asymptotic frame) is not changed under time evolution.
One can therefore express Eqs. (7) and (8) in the asymp-
totic frame yielding equations for the �i (eigenvalues of
��

�) and the Ni (eigenvalues of N�
�). During a time

period where all the Ni are negligible, it follows that all
the �i are constant. Such a time period is called a Kasner
epoch. During a Kasner epoch, two of theNi are decaying
and one is growing. The growing eigenvalue of N�

�

eventually gives rise to a transition (called a ‘‘bounce’’)
to another Kasner epoch. It is helpful to define a quantity
u by

��
��

�
��

�
� � 6�

81u2�1� u	2

�1� u� u2	3
(20)

(there is a unique u � 1 provided the quantity on the left
hand side of the equation is between �6 and 6). The
quantity u is constant in each Kasner epoch and changes
161101-2
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FIG. 1. Maximum values of lnjE�ij (solid line), lnjr�j (dot-
ted line) and lnjA�j (dot-dashed line) vs time.
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FIG. 2. Constraint Cq vs time, for n � 50 (solid line) and
n � 25 (dot-dashed line).
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FIG. 3. Components of ��� vs time, in the asymptotic
frame: �1 (solid line), �2 (dotted line) and �3 (dot-dashed
line).
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from epoch to epoch as follows: u! u� 1 if u � 2 and
u! 1=�u� 1	 if 1< u � 2. This rule is called the umap.

We now turn to the numerical simulations. All runs
were done in double precision on a SunBlade 2000 with
n � 50 (except for an examination of resolution which
also used n � 25). The equations were evolved from t �
0 to t � �130. The initial value ofH was 1

3 corresponding
to an initial trace of extrinsic curvature equal to �1. The
bi were chosen with b3 � 0 and b1 and b2 given so that
the spacetime would be a Kasner spacetime with u � 2:3
if the ai vanished. For the runs presented here the ai were
given as �0:2; 0:1; 0:04	.

We would like to know whether E�i; r�, and A� become
negligible as the singularity is approached. In Fig. 1 the
maximum values (over all space, � and i) of lnjE�ij,
lnjr�j, and lnjA�j are plotted as functions of time. Note
the steep decrease in these quantities near t��20. This
indicates that r�, A�, and the spatial derivatives become
negligible for t & �20. (The failure of the quantities
plotted in Fig. 1 to continue to decrease is most likely
due to unresolved small scale spatial structure to be
discussed below.) Thus the interesting part of the dynam-
ics can be seen by looking at the development of the
variables at a single point as a function of time. We now
present data of that form. The behavior at the spatial point
chosen is typical.

The behavior of a constraint is presented in Fig. 2. Here
what is plotted is Cq at the spatial point as a function of
time. The solid line is for the n � 50 run and the dot-
dashed line is for the n � 25 run. The finer resolution
yields a smaller value for the constraint; but the resolu-
tion is not good enough to be in the convergent regime.
Note that the time dependence of the two runs becomes
increasingly out of sync. This is due to the chaotic nature
of homogenous cosmologies. [2] Also note that the shape
of the constraint for the two runs does not completely
match. This may be due to unresolved small scale struc-
ture to be discussed below. Similar results were obtained
for the other constraints.

Figs. 3 and 4 show, respectively, the diagonal compo-
nents of ��� and N�� in the asymptotic frame. Though
not shown here, I have also examined the off-diagonal
161101-3
components of both ��� andN�� in this frame. For times
t & �20 these off-diagonal components become negli-
gible. This demonstrates that for these times the asymp-
totic frame is essentially unchanged and the quantities in
Figs. 3 and 4 are eigenvalues of ��

� andN�
� respectively.

Note that for t & �20 the behavior of the components of
��� consists of epochs where they are constant punctu-
ated by short bounces where they change rapidly. Note too
that for t & �20 the behavior of the components of N��
is that they are negligible during the epochs of constant
��� and that one component of N�� becomes non-
negligible at each bounce. This is exactly what we would
expect from the approximation of using the equations for
homogeneous spacetimes.

We now turn to the behavior of the quantity u. In Fig. 5
u is plotted as a function of time. Note that u undergoes a
series of bounces when the components of ��� do. The
sequence of values of u begining at t��20 is 1.279,
3.583, 2.584, 1.584, 1.712. This sequence obeys the umap.

In summary, these simulations provide strong support
for the BKL conjecture. The initial data that are evolved
have no symmetry and can be regarded as generic. The
evolution shows that spatial derivatives become negligible
and the time dependence goes over to the well studied
behavior of a general homogeneous cosmology. This dy-
161101-3
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FIG. 4. Components of N�� vs time, in the asymptotic
frame: N1 (solid line), N2 (dotted line) and N3 (dot-dashed
line).
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FIG. 5. u vs time.
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namics is oscillatory consisting of a series of Kasner
epochs punctuated by short bounces. The details of the
oscillations given by the behavior of the quantity u are in
agreement with what would be expected for locally ho-
mogeneous spacetimes.

We now consider what remains to be done on this
subject. First recall that bounces occur when one of the
Ni grows exponentially. If that Ni initially vanishes on a
surface S then we would expect bounces on either side of
S, but not on S itself. This gives rise to a small scale
structure which can be seen (crudely) in the results of
these simulations, and which has been well studied in the
Gowdy spacetimes. [11,12] A corresponding study for the
case of no symmetry will require high resolution and is
work in progress.

The present work only treats vacuum spacetimes. There
is a general expectation that for most types of matter (a
scalar field is an exception) the influence of the matter on
the dynamics should become negligible as the singularity
is approached. The formalism of reference [6] is for a fluid
with equation of state P � k% for constant k. Thus a fairly
straightforward generalization of the simulations re-
ported here would be to do simulations of the approach
to the singularity for P � k% perfect fluid.

Another question is whether there are any residual
effects of the spatial derivatives as the singularity is
approached. Comparison of the full evolution to one
where the spatial derivatives are set to zero after a time
t0 yields differences: the sequence of bounces is the same,
but they occur more rapidly in the full evolution. This may
be due to the spatial derivatives’ increasing the values of
the Ni and thus hastening the time when the Ni become
large enough to cause a bounce.

Finally, note that this simulation is for a spatially
closed universe. Since the result is that the dynamics
become local as the singularity is approached, these
results should describe at least a portion of the singularity
in any generic spacetime, including asymptotically flat
161101-4
spacetimes that undergo gravitational collapse to form
black holes. Nonetheless, there is a body of work [13,14]
that indicates that when a black hole forms, that portion
of the singularity that is near the event horizon is null (or
asymptotically null). It would be good to extend the
methods presented here so that they are able to treat
collapse in asymptotically flat spacetimes and the near
horizon properties of the singularities formed.
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