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Morphological Thermodynamics of Fluids: Shape Dependence of Free Energies
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We examine the dependence of a thermodynamic potential of a fluid on the geometry of its container.
If motion invariance, continuity, and additivity of the potential are satisfied, only four morphometric
measures are needed to describe fully the influence of an arbitrarily shaped container on the fluid. These
three constraints can be understood as a more precise definition for the conventional term extensive and
have as a consequence that the surface tension and other thermodynamic quantities contain, aside from
a constant term, only contributions linear in the mean and Gaussian curvature of the container and not
an infinite number of curvatures as generally assumed before. We verify this numerically in the entropic

system of hard spheres bounded by a curved wall.
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Although thermodynamics is built on extremely gen-
eral assumptions, its implications are far reaching and
powerful. One basic building block is geometry which
has a long history in thermodynamics and statistical
physics of condensed matter. The formulation of thermo-
dynamics in terms of differential forms, scaled-particle
theory (SPT) for fluids [1], depletion forces [2] of colloids
in biological cells [3], and density functional theory
(DFT) [4] based on fundamental geometric measures
[5-7] are only a few examples of the importance of a
general geometric point of view on thermodynamic prop-
erties. In Refs. [8—10] the structure and phase behavior of
microemulsions was explained assuming that the free
energy of the fluid on a mesoscopic scale is given solely
by four fundamental geometric measures [11]. Here, we
show numerically for the first time that these four fun-
damental measures are sufficient to describe accurately
the free energy of a hard-sphere fluid in contact with a
complexly shaped wall which supports the more general
assumptions made in Refs. [8—11].

The grand potential Q) = Q[S; T, w] of a fluid depends
on the temperature T and the chemical potential u of the
system, as well as on certain geometrical quantities which
describe the shape of the container that bounds the system
S. What are these thermodynamically relevant morpho-
logical parameters? One usually argues that every ther-
modynamic potential is an extensive quantity, which
means that it scales linearly with the ‘““size” of the system
S. By partitioning a large system into identical smaller
subsystems one normally assumes that Q[S; 7, n] is pro-
portional to the volume V = V[S] of the system and uses
asansatz Q[S; T, u] = o(T, u)V[S]. The intensive quan-
tity (7T, w) is the negative of the pressure p(T, w) and is
independent of the size of the confining container of S.
This simple ansatz, however, is valid only for infinite
bulk, i.e., “borderless” systems. If S is bounded by a
container, {) depends on the shape of the container in a
potentially complicated manner and is conventionally
described by an infinite expansion in powers of the cur-
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vatures of the wall. However, we show that general con-
siderations restrict this functional dependence on the
shape to a linear combination of only four morphological
measures, if all intrinsic (correlation) length scales are
small compared to the system size. This finding is, in
particular, important for systems such as porous media
[12], biological cells [3], or complex fluids such as micro-
emulsions [8] where fluids are confined by complexly
shaped compartments and where the dependence of ther-
modynamic quantities and transport properties on the
shape of pores or cells has significant functional and
biological consequences. Our arguments, however, can-
not be applied to critical phenomena, or if long ranged
fluid-fluid or fluid-wall interactions are considered or if
wetting or drying phenomena [13] occur at the wall, as
intrinsic lengths in such systems have a macroscopic size.

Now we focus on the dependence of ([ S] on the shape
of the system §. The actual form of this mapping from a
container onto a real number is given by the type and
state of the fluid under consideration and is a complicated
integral over the phase space of the system, which usually
can be calculated only approximately. However, we im-
pose three physical restrictions on this mapping.

(i) Motion invariance: The thermodynamic potential
of a system must be independent of its location and
orientation in space, ie., Q[gS] = Q[S] for all transla-
tions and rotations g in three dimensions.

(ii) Continuity: If a sequence of convex sets S, con-
verges towards the convex set S for n — oo, then Q[S,] —
Q[S]. Intuitively, this continuity property expresses the
fact that an approximation of a convex domain by, e.g.,
convex polyhedra also yields an approximation of the
thermodynamic potential Q[S] by Q[S,]. In SPT it is
shown that continuity is violated if the container S is very
small and comparable in size to that of fluid particles [14].
Here we consider a larger container S.

(iii) Additivity: The functional of the union of two
domains S;, i = 1,2, is the sum of the functional of
the single domains subtracted by the intersection:
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Q[S;US,1=Q[85,]1+ Q[S,]—Q[S;NS,]. This relation
generalizes the common rule for the addition of an ex-
tensive quantity for two disjunct domains $1 NS, = @ to
the case of overlapping domains by subtracting the value
of the thermodynamic quantity of the double-counted
intersection. Note that the intersection S; NS, does not
need to be a volume but can rather be an area or a line for
adjacent containers S;. Additivity can break down if long
ranged interactions are present or if the system develops a
macroscopic intrinsic length scale. A fluid can be consid-
ered additive even inside a concave container, if opposing
walls are separated by several correlation lengths.

Naturally the question arises about the most general
form of a potential that satisfies these three conditions.
The Hadwiger theorem [15,16] states that every motion-
invariant, continuous, and additive functional in three
dimensions can be written as a linear combination of
the volume V = [¢dV, the surface area A = [,;dA,
the integrated mean curvature C = [, HdA, and the
Euler characteristic X = [,oKdA of the container.
Therefore we write

Q[S] = —pV[S] + cA[S] + «xC[S] + &X[S] (1)

as a complete expression for the grand canonical poten-
tial, if the aforementioned conditions are satisfied [8§—11].
The pressure p(T, u), the surface tension at the planar
wall o(T, n), and the bending rigidities «(7, u) and
K(T, w) are properties of the fluid and the wall-fluid
interaction, but are independent of the actual shape of
the bounding wall. The latter two thermodynamic coef-
ficients describe the influence of the curvature of the wall.
Similar coefficients are also used for the Helfrich
Hamiltonian [17], which describes the free energy cost
of bending a membrane. It is compatible with Eq. (1) on a
length scale larger than the persistence length of the
membrane, where renormalized contributions propor-
tional to H? vanish due to thermal fluctuations.

Note that Eq. (1) can easily be applied even to com-
plexly shaped objects because the shape of S enters ()
only via the four simple morphometric measures V, A, C,
and X, while the thermodynamic coefficients o, k, and k
can be determined in a simple geometry.

Thermodynamic quantities can be derived directly
from () and inherit a simple dependence on the shape
of S by virtue of Eq. (1). The interfacial tension y =
(2 + pV)/A, which measures the total change in the
grand potential per unit area introduced by the wall,
can be evaluated using

vy=o0+«kH+ kK, )

where H = C/A and K = X /A are the averaged mean and
Gaussian curvatures of the bounding wall. These geomet-
rical quantities can be calculated from the principal radii
of curvature R, and R, via H = (1/R, + 1/R,)/2 and
K = 1/(RR,). Note that this further justifies the ansatz
used in SPT [1,18] for the interfacial tension and shows
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that the analytic dependence of y on the curvature is a
direct consequence of the additivity of the grand poten-
tial. No higher powers or derivatives of H or K contribute
either to vy or to ().

Closely related to the interfacial tension is I', the excess
(over the bulk) amount of fluid adsorbed at the wall per
unit area, which is defined as I' = (1/A) [([p(r) — pldV,
where p is the bulk density and p(r) is the inhomogeneous
density distribution of the fluid. It inherits the morpho-
metric form of the interfacial tension via Gibbs’ adsorp-
tion theorem

—F=(a—7> ALY LY 3)
ujry  dm Ipu Ip

If a fluid is bounded by a container one denotes the
number density closest to the wall as contact density p€,
which becomes p¢, when averaged over the boundary
surface. For hard walls p¢ can be regarded as a thermo-
dynamic quantity because of an exact sum rule [18,19]
and also features a simple dependence on the geometry:

p¢=p+20H + kK. 4)

This relation can be derived by generalizing the argu-
ments given by Henderson [19]. Note that the density
distribution of the fluid away from contact depends in a
more complicated way on the curvature of the wall.

We test the vanishing of higher powers of H and K in
thermodynamic quantities such as Q, vy, I', or p¢ by
extensive numerical studies of a fluid of hard spheres of
radius R bounded by a hard wall using DFT. For a given
chemical potential w, the bulk number density p of
spheres or equivalently the packing fraction 7 =
47R3p/3 are fixed. Hard-core interactions do not intro-
duce an energy scale such that we can account for the
temperature dependence of all thermodynamic quantities
by scaling energies with 8 = 1/(kzT). One can expect
the grand potential of a hard-sphere fluid to be additive as
hard-core interactions are short ranged and the cor-
relation length remains small in the fluid phase.
Unfortunately, for arbitrarily shaped walls, there exists
no reliable and accurate direct method to calculate ther-
modynamic quantities. However, for simple geometries
such as planar, spherical, or cylindrical walls, it is pos-
sible to apply, e.g., DFT techniques [4], which allow the
calculation of o, k, and k. For these geometries, the
curvatures and the contact density are constants over
the surface such that we can replace averages over the
surface by their local quantities. Rosenfeld’s fundamental
measure theory (FMT) [5] and the White-Bear version of
FMT [6,7] have proven to describe the thermodynamics
and structure of hard-sphere fluids very accurately, and
both give qualitatively equivalent results in the following
analysis, as well as the non FMT-based Tarazona Mark I
functional [20]. It is important to realize that minimizing
a FMT functional does not restrict the results to standard
SPT behavior [18].
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The thermodynamic coefficients of Eq. (1) are shown
in Fig. 1 as functions of the packing fraction 7 of the fluid.
As a dividing interface, which determines the surface
area A as well as the curvatures H and K, we choose
the surface where the contact density is measured. From
these coefficients one can obtain values for v and p€ for
various geometries. In the inset of Fig. 1 we show the
relative error (full line) of y of a hard-sphere fluid with
packing fraction n = 0.3 at a cylinder with radius R, as
calculated with the thermodynamic coefficients com-
pared to that obtained directly from DFT. This relative
error is of the same order of magnitude as the relative
numerical error of the contact sum rules, Eq. (4), indicat-
ing clearly that the very small deviation between the
morphometric interfacial tension and that from a direct
DFT calculation is a numerical error of our calculation.

In order to show that the linear expansion in H and K
of y and p°€ is sufficient, we include for the analysis of our
data also nonadditive terms and show that they do not
contribute either to y or to p°. To this end we introduce
the curvature expansion of, e.g., the contact density

pe = pp+ pyH + piK + pSH> + pfr HK
+p5.HY + O(R3). 3)

The coefficients p§ for é = P, H, K, H*, HK, H°, ... can
be determined numerically using DFT. The results in
Fig. 2 show that irrespective of the bulk density only
the additive terms p$, p§, and p% contribute to p°.
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FIG. 1. The expansion coefficients as defined in Eq. (1) of the
grand potential of a hard-sphere fluid. For each value of 7, the
four thermodynamic coefficients can be used to calculate
thermodynamic quantities for arbitrarily shaped systems. The
solid line of the inset shows the relative error of y at a cylinder
with radius R, calculated using the thermodynamic coefficients
at 7 = 0.3. This error can be compared to the numerical
relative error for a sum rule [18,19] (dashed line), which gives
an estimate for the accuracy of our DFT data. Both errors are of
the same order of magnitude such that our numerical data are in
agreement with the prediction of Eq. (1). The fluid was modeled
via Rosenfeld’s FMT [5].
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Note that, in particular, p% (additive) contributes to the
contact density, whereas p?ﬂ (nonadditive) does not,
although both K and H” feature the same quadratic
dependence on the radii of curvature. This shows that
the expansion in H and K is complete and not a truncated
power series. In the inset of Fig. 2 we show the relative
error of the contact density of a hard-sphere fluid at a
sphere with radius SR as a function of 7 obtained by the
morphometric form (dashed line) of p¢, Eq. (4), and by
the generalized curvature expansion (full line), Eq. (5),
both compared to the direct calculation of DFT. Since in
both cases the relative error is roughly the same, we
conclude that additive contributions are sufficient to de-
scribe the influence of curvature on the contact density p€.

To further highlight that the remarkably simple func-
tional dependence on only four morphometric measures
of the container is a peculiar feature of thermodynamic
quantities, we introduce, in addition to the hard-wall
potential, a short-ranged soft part to the wall-fluid po-
tential of the form Vi (u) = Vyexp(—u/A), where u
denotes the normal distance from the dividing inter-
face. It can be either attractive, if V; <0, or repulsive, if
Vo > 0. Note that this additional part of the wall-fluid
interaction leaves the morphometric form of thermody-
namic quantities such as the grand potential ), Eq. (1),
and the surface tension y, Eq. (2), unchanged. The contact
density p€¢, however, loses its morphometric form for any
nonzero value of V|, because the sum rule Eq. (4) acquires
an additional term [19].
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FIG. 2. Curvature expansion coefficients for the contact den-
sity of a hard-sphere fluid as a function of the packing fraction
1. Only the additive contributions p%, p%, and p% contribute.
The inset shows the relative error for the contact density at a
spherical container with radius SR between a direct DFT
calculation and two approaches: For the solid curve all shown
curvature expansion coefficients are used, for the dashed one
only additive contributions. The error, which is due to the
numerical inaccuracies, is in both cases roughly the same.
This shows that nonadditive terms do not contribute to the
thermodynamic quantity p¢. Similar results were found for y
(Fig. 1).
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FIG. 3. If the external potential of a hard container is per-
turbed by an additional potential as, eg., V()=
Vo exp(—u/A) the contact density p° is no longer a thermody-
namic quantity for V; # 0. In this case nonadditive contribu-
tions such as pf,, are necessary to describe the dependence on
the curvatures of the wall. Here we show p% and pi, in a
logarithmic plot for A = R and a packing fraction n = 0.3. It is
striking that even very small perturbations lead to pg, # 0
which is a clear indication that additivity of the contact density
p¢ is destroyed. In contrast, p% contributes to the contact
density for all V.

This effect can be demonstrated by performing a cur-
vature expansion, Eq. (5), of the contact density as a
function of V{,. In the case of a purely hard wall, V, =
0, the curvature expansion contains only additive contri-
butions (p%, pf, and p%), whereas for nonzero values of
V, this is no longer the case and the amplitude of, e.g.,
p;#’ increases with an increasing value of |V,|. As an
example of this behavior we display in Fig. 3 p% (addi-
tive) and p{, (nonadditive) for a hard-sphere fluid with
packing fraction n = 0.3 for values of BV, from —1 to 2
and A = R. It is very striking that already for very small
amplitudes |Vy| # 0, for which the soft part of the wall-
fluid interaction can be regarded as a small perturbation,
the contact density p¢ acquires additional nonadditive
contributions. We verified that the interfacial tension 7y
keeps its morphometric form (not shown), as expected.

Monte Carlo simulation confirms that the contact den-
sity of a hard-sphere fluid with n = 0.3314 around a
biaxial ellipsoid with half axes (4,4, 10)R as obtained
by Eq. (4). Within the statistical errors of the simulation
(about 1%), the results of Eq. (4) together with the ther-
modynamic coefficients shown in Fig. 1 agree with the
simulation data [21]. Furthermore, we also confirmed that
Eq. (2) holds accurately in concave geometries if the
perturbations introduced by the container do not interfere
at caustic points. For a relatively high packing fraction of
hard spheres of n = 0.4 the deviation between Eq. (2) and
direct DFT results is smaller than 1.5% for all radii of the
cylinder larger than 5R.
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We presented a more precise definition than the con-
ventional term “‘extensive” to describe the dependence of
a thermodynamic quantity of a fluid with short intrinsic
length scales on the shape of the system. The assumption
that the grand potential of a fluid is motion invariant,
continuous, and additive allows an expansion in terms of
only four simple morphological functionals [8—11]. As a
consequence, the curvature expansion for thermody-
namic quantities terminates after linear terms in mean
and Gaussian curvatures. This observation allows a cal-
culation of thermodynamic quantities for complexly
shaped objects with a greatly reduced effort in compari-
son to direct methods. The ideas presented here and tested
numerically for the hard-sphere fluid should be applicable
also to fluids with short-ranged interactions provided that
intrinsic length scales are small compared to typical
features of the container. If, however, length scales are
comparable, continuity or additivity may be violated and
thermodynamic quantities acquire additional contribu-
tions. The present approach is currently being extended
to include local structure (density profiles) which will
allow the prediction of entropic contributions to the ef-
fective interactions of complicated macromolecules.
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