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The adiabatic theorem states that an initial eigenstate of a slowly varying Hamiltonian remains close
to an instantaneous eigenstate of the Hamiltonian at a later time. We show that a perfunctory
application of this statement is problematic if the change in eigenstate is significant, regardless of
how closely the evolution satisfies the requirements of the adiabatic theorem. We also introduce an
example of a two-level system with an exactly solvable evolution to demonstrate the inapplicability of
the adiabatic approximation for a particular slowly varying Hamiltonian.
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Introduction.—Since the dawn of quantum mechanics
[1–3], the venerable adiabatic theorem (AT) has under-
pinned research into quantum systems with adiabatically
(i.e., slowly) evolving parameters, and has applications
beyond quantum physics, for example, to electromagnetic
fields. The AT lays the foundation for the Landau-Zener
transition (LZT) (including the theory of energy level
crossings in molecules) [4], for the Gell-Mann–Low
theorem in quantum field theory [5] on which perturba-
tive field theory is constructed, and for Berry’s phase [6].
More recently the AT has renewed its importance in the
context of quantum control, for example, concerning
adiabatic passage between atomic energy levels [7], as
well as for adiabatic quantum computation [8]. Essent-
ially the standard statement of the AT implies that a
system prepared in an instantanous eigenstate of a
time-dependent Hamiltonian will remain close to an
instantaneous eigenstate of the Hamiltonian provided
that the Hamiltonian changes sufficiently slowly. Here
we demonstrate that the application of the standard state-
ment of the AT leads to an inconsistency, regardless of
how slowly the Hamiltonian changes; although the AT
itself is sound provided that deviations from adiabaticity
are properly accounted for, the standard statement alone
does not ensure that a formal application of it results in
correct results. In addition, we present a simple two-level
example for the failure of the AT even in a case when all
the criteria for the AT seem to be met. The results of this
Letter are intended to serve as a warning that the incau-
tious use of the AT may produce seemingly unproblematic
results which nevertheless may be grossly wrong.

Before demonstrating the inconsistency arising from
the standard statement of the AT, we give a simple ex-
position of the theorem’s proof as presented in Ref. [9].
The evolution of a quantum state j �t�i under a unitary
evolution U�t; t0� is described by j �t�i � U�t; t0�jE0�t0�i.
We assume that the initial state jE0�t0�i is an eigenstate of
the initial Hamiltonian H�t0�. The time-dependent
Hamiltonian is related to U�t� by H�t� � i _UUy [10],
0031-9007=04=93(16)=160408(4)$22.50 
such that j �t�i fulfills the usual Schrödinger equa-
tion. In the instantaneous eigenbasis fjEn�t�ig of H�t�, the

state can be expressed as j �t�i�
P
n n�t�e

	i
R
En jEn�t�i,

where we have introduced the shorthand notation
R
En 
R

t
t0
En�t0�dt0. Inserting this expansion into the Schröd-

inger equation leads to the following differential equation
for the coefficients:

i _ n � 	i
X
m

ei
R
�En	Em� mhEnj _Emi: (1)

The AT relies on the requirement that H�t� is slowly
varying according to

jhEnj _Emij  jEn 	 Emj; n � m: (2)

Transitions to other levels are then supposed to be negli-
gible due to the rapid oscillation arising from the phase
factor exp�i

R
�En 	 Em��, yielding

j �t�i � e	i
R
E0ei0 jE0�t�i (3)

with n � i
R
hEnj _Eni the geometric phase (GP) [6].

Condition (2) and approximation (3) summarize the stan-
dard statements of the AT.

Proof of inconsistency.—The inconsistency implied by
Eq. (3) is evident by considering the state j � i :�
Uy�t; t0�jE0�t0�i. Using @t�U

yU� � 0 it is easy to see
that this state fulfills an exact Schrödinger equation
with Hamiltonian �H�t� � 	Uy�t; t0�H�t�U�t; t0�. To dem-
onstrate the inconsistency, we commence with a claim
that is shown to yield a contradiction.

Claim: The AT (3) implies

j � i � ei
R
E0 jE0�t0�i: (4)

Proof of inconsistency: BecauseU�t0; t0� � 1, result (4)
fulfills the correct initial condition so it remains to show
that (4) also fulfills the Schrödinger equation:
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i@tj � i � 	E0�t�j � i

� 	E0�t�U
yUei

R
E0 jE0�t0�i

� 	E0�t�U
yei0 jE0�t�i

� 	UyH�t�ei0 jE0�t�i

� 	UyH�t�Uei
R
E0 jE0�t0�i

� �H�t�j � i: (5)

The AT is explicitly used in the lines with � . However,
Eq. (4) implies

hE0�t0�jUUyjE0�t0�i � hE0�t0�jUj � i

� ei0hE0�t0�jE0�t�i � 1; (6)

which is false �.
Clearly the inconsistency is a consequence of neglect-

ing the deviations of Eq. (3) from the exact time evolution
which is free of inconsistencies. Stated another way,
approximation (3), without correction terms, could be
exact only in the limit of infinitesimally slow evolution,
for which the system is constant over finite time and the
evolution is indeed given by a multiplicative phase cofac-
tor. However, evolution is not infinitesimally slow, and
neglect of the correction terms leads to the inconsistency
demonstrated above. To elucidate this point we define the
following unitary transformation,

UAT�t; t0� 

X
n

e
	i
R
t

t0
Enein�t�jEn�t�ihEn�t0�j: (7)

The (exact) time evolution generated byUAT is equivalent
to the standard statement (3) of the AT for adiabatic
motion in a finite-dimensional Hilbert space with non-
degenerate energy levels. It is straightforward to write
�HAT�t� � 	iUy

AT
_UAT in the form

�HAT�t� � 	
X
n

En�t�jEn�t0�ihEn�t0�j

	i
X
m�n

ei
R
�En	Em�e	i�n	m�hEn�t�j _Em�t�i

� jEn�t0�ihEm�t0�j: (8)

The second sum in this expression has the same structure
as those terms that are omitted in the adiabatic approxi-
mation, and by omitting these terms one again arrives at
the inconsistent result (4). However, evaluating
Hamiltonian ~�HAT in the interaction picture with respect
to the first line of �HAT, one finds

~�H AT�t� � 	i
X
m�n

e	i�n	m�hEn�t�j _Em�t�ijEn�t0�ihEm�t0�j:

(9)

In this Hamiltonian the transition matrix elements be-
160408-2
tween the different initial eigenstates are not rapidly
oscillating anymore and therefore cannot be neglected.
However, perfunctory use of the standard statement of
the AT (3) implicitly neglects such terms.

Thus we have shown that the standard statement of the
AT may lead to an inconsistency no matter how slowly the
Hamiltonian is varied, but so much science rests on the
AT that the implications of this inconsistency are impor-
tant and require exploration. Perhaps the most important
application of the AT is the slow evolution of an initial
instantaneous eigenstate jE0�t�i into a later instantaneous
eigenstate jE0�t�i that is meant to be quite different; i.e.
F 0 � jhE0�t�jE0�t0�ij  1. For example, the famous LZT
[4] evolves a two-level molecule or atom with orthogonal
basis states j0i and j1i from jE0�t0�i � j0i to jE0�t�i � j1i
with near-unit probability so that F 0 � jh0j1ij � 0. On
the other hand, the quantity F 1 � jhE0�0�jUU

yjE0�0�ij
should always be unity, but (6) implies F 1 � F 0 � 0.
Thus, the deviation of the overlap function F 0 from unity
is an alarm indicator for when the AT is vulnerable to the
inconsistency: whenever jE0�t�i deviates strongly from
the initial state jE0�0�i, the inconsistency is a potential
problem, regardless of how slowly H�t� changes.

Counterexample of a two-level system.—Problems in
the application of the AT are not restricted to the inverse
time evolution. As a specific example, consider a two-
level system with exact time evolution defined by

U�t�� exp�	 i��t�n�t� ���� cos�1	 in �� sin� (10)

with ��t� � !0t, n�t� � � cos�2�t=��; sin�2�t=��; 0�, and
� � ��x; �y; �z� denoting the Pauli spin vector operator.
The associated Hamiltonian can be calculated using
H�t� � i _UUy and can be written in the form H�t� �
R�t� � �, with

R � _�n� cos� sin� _n� sin2��n� _n�

� !0n�t� �
sin�!0t�

�
~R�t�; (11)

where ~R�t� 
 2��	 sin�2�t� � cos�!0t�; cos�
2�t
� � cos�!0t�;

sin�!0t��. This Hamiltonian is similar to that of a
spin- 12 system in a magnetic field of strength proportional
to!0 that rotates with period � in the x-y plane. The exact
Hamiltonian for the latter case would correspond to
~R�t� � 0; we discuss the importance of this difference
below. The eigenvalues of H�t� are given by

E��t� � �jR�t�j � �
����������������������������
_�2 � sin2� _n2

p
: (12)

It is easy to show that the evolution operator (10) fulfills
requirement (2) for adiabatic evolution as long as the
vector n changes slowly compared to !0, i.e., for !0��
1. The time scale � corresponds to the large time scale
which appears in the mathematically more elaborate
forms of the AT [2,3,11]. These correction terms are
resonant [12] so that a large deviation from the AT
predictions can accumulate over time.
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FIG. 1. Fidelity F of Eq. (17) for !0 � 1 s	1 and � � 2��
10 s	1.

VOLUME 93, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S week ending
15 OCTOBER 2004
To evaluate the predictions of the AT it is convenient
to consider projection operators instead of the state
itself. Projectors onto eigenstates of H�t�, which fulfill
H�t�j��t�i � �jR�t�jj��t�i, can generally be written as

Pj��t�i �
1

2

�
1�

R�t� � �
jR�t�j

�
: (13)

If we consider the evolution at time T � �=2 and assume
for simplicity that !0T is a multiple of 2�, we have
R�T� � 	R�0� and U�T� � 1. We thus find Pj��T�i �

Pj	�0�i, but PUj��0�i � U�T�Pj��0�iU�T�y � Pj��0�i. In
other words, the perfunctory prediction

U�T�Pj��0�iU�T�y � Pj��T�i (14)

of the AT is invalid. Thus, whereas a resonant but weak
time-dependent oscillatory term in the evolution repre-
sents an unusual application of the AT, this system meets
the criteria of the AT and therefore casts doubt on the
general applicability of criterion (2).

For two-level systems, it is possible to derive a general
criterion on when the AT is bound to fail, i.e., when the
quantity Q :� jh��t�jU�t�j � �0�ij2 � TrPUj��0�iPj��t�i

strongly deviates from one. It is evident that this criterion
depends on U�t� at time t only, as well as on the
Hamiltonians H�t� and H�0�. There is no direct reference
to the slow evolution of the Hamiltonian because the
criterion does not depend on _H. For a unitary transfor-
mation of the form (10) with general ��t� and n�t� it is
straightforward to derive

Q �
1

2

�
1�n�0� �

_�n�cos�sin� _n	sin2�n� _n
jRj

�
: (15)

We have assumed thatU�0� is given by the identity matrix
so that ��0� � 0 and R�0� � _��0�n�0�. To examine when
Q can become small we focus on a special case of
adiabatic evolutions, characterized by _�� j _nj. In this
case we can neglect all terms containing _n such that
jRj � _�. We then arrive at the conclusion that the AT is
maximally violated if n�t� � 	n�0�, as in the case for the
example given above. We note that many other adiabatic
evolutions do not fulfill _�� j _nj, since it implies that
_� > 0 so that U�t� has to become equal to the identity

again within the fast time scale 1= _�. For instance, a LZT,
for which R�t� � �ex 	 _�0t=2ez for constant real � and
_�0, asymptotically fulfills R�t� � 	R�	t�, but not _��
j _nj so that Q � 1 is still valid.

Equation (15) is a universal criterion for the failure of
the AT for two-level systems. Although it is likely that
the small but resonant terms in our counterexample (CE)
are the cause for this failure, a nonresonant CE to the
consistency of the standard statement of the AT is not
necessarily excluded. This is because Eq. (15) depends
only on the initial and final Hamiltonians and the final
unitary matrixU, and therefore makes no reference to the
behavior during the evolution.
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It is worthwhile to examine whether a resonant behav-
ior as in our CE is excluded by the conditions imposed on
the Hamiltonian in more rigorous forms of the AT. The
two cases we do consider both require the usual gap
condition for the energy levels, which is fulfilled in the
CE. In addition, Kato [3] demands dH�s�=ds to be finite
for �! 1, where s � t=� is a scaled time variable. This
is the case for the CE [13]. In another proof of the AT,
Avron et al. [11] require the Hamiltonian to be at least
twice continuously differentiable, which is also fulfilled
by the CE [14]. In this case the AT (Theorem 2.8 of
Ref. [11]) is slightly different and states that PUj��0�i stays
close to PUAj��0�i, where the unitary operator UA�t� is
generated by the modified Hamiltonian

HA�t� � H�t� � i� _Pj��t�i; Pj��t�i� (16)

[cf. Eq. (1.0) and Lemma 2.2 of Ref. [11] ]. For the CE
presented above, we have numerically solved the
Schrödinger equation (in the scaled time s � t=�) for
the propagator UA and calculated the fidelity (or overlap)

F � Tr

�������������������������������������������������
P1=2
Uj��0�iPUAj��0�iP

1=2
Uj��0�i

r
(17)

between the exact time evolution and the eigenvector
subspace propagated with HA. The result is shown in
Fig. 1. As in our analytical results the overlap becomes
zero for t=� � 1=2 where the maximal violation occurs.

Thus it seems that the conditions on the AT are not
strict enough to exclude the CE. A way to exclude reso-
nant but small behavior may be to demand continuous
differentiability of H�s� even in the limit �! 1.
However, while this would be a sufficient criterion to
exclude resonances, it may not be a necessary criterion
and thus could exclude other cases in which the AT works
well. Also, since it is not proven that resonances are the
cause of problems, this criterion might not exclude other
cases where the AT may become problematic.

Remarks on the validity of the AT.—Although the stan-
dard statement of the AT may be problematic in certain
applications, previous results based on the AT are gener-
ally not necessarily affected. The reason is that the in-
consistency is not related to the validity of the AT as an
approximation but to its application in formal derivations.
160408-3
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In addition, most applications of the AT as an approxi-
mation do not include resonant perturbations, so that the
AT should provide an excellent approximation to the exact
time evolution. This is the case, for instance, for a real
spin- 1

2 system in a slowly rotating magnetic field ( ~R � 0
in the Hamiltonian above) and for LZTs. The correctness
of the LZT may also guarantee that the results of adia-
batic quantum computation [8] remain valid because, for
a two-level system, the latter can be mapped to the first.
However, if the reversed time evolution Uy�t; t0� were to
be computed using Eq. (4), the inconsistency could yield
an incorrect state.

An example where the inconsistency associated with
the AT poses a significant problem is a perturbative treat-
ment of the GP. For brevity we refer to Refs. [6,9,15] for
explanations of the technical terms and the GP used in
this paragraph. Under the condition of parallel transport
[15] the GP of an evolving state is given by the phase of
h �0�j �t�i � h �0�jU�t�j �0�i. If we consider the case
that the unitary operator is slightly perturbed by an
operator P, one can show that for an open quantum
system the associated corrections include terms of the
forms h �0�jU�t�Pj �0�i and h �0�jPU�t�j �0�i [16]. In
order to calculate these corrections one needs, in parti-
cular, to find an expression for the state h �0�jU�t� �
�Uy�t�j �0�i�y. It is obvious that the inconsistency would
then lead to a wrong result for the GP.

In general, a potential problem in the application of the
AT could be the presence of small fluctuations in an
experiment, even if the ideal case would not be affected
by the inconsistency. The reason is that example (10)
indicates that small changes can invalidate the predic-
tions of the AT, even if they respect the adiabaticity
criterion (2). In the two-level CE, the small terms pro-
portional to ~R in the Hamiltonian change a system where
the AT is valid to one where it is maximally violated. Thus
whenever adiabatic fluctuations are present in an experi-
ment, it seems to be necessary to check the predictions
of the AT. This could be done by checking the quantities
F 0 and Q for mixed states. To be more specific, we
consider a system with fluctuations in the classical
parameters that determine its Hamiltonian. Thus, in
each run the system undergoes a unitary evolution, de-
scribed by a Hamiltonian H����t� which occurs with
probability p�. Assuming that the system initially is
always prepared in an eigenstate jE��0�i, the density
matrix for the fluctuating system is given by ��t� �P
�p�U��t�PjE��0�iU

y
��t�, and one finds

F 0 � Tr
X
�

p�PjE��0�iPjE��t�i; (18)

Q � Tr
X
�

p�PU�jE��0�iPjE��t�i: (19)

For some index �, the application of the AT may fail, but
averaging over � could mitigate the deleterious effects.
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The exploration of the AT for fluctuating systems and
mixed states [17] is an important future direction for
ascertaining the validity and limits of the AT.

In conclusion, we have demonstrated an inconsistency
implied by the standard statement of the ATand presented
a counterexample of a two-level system. Both examples
alert us to the fact that the AT must be applied with care.
Further work will concern testing the AT for various
systems, especially those that involve stochastic flucta-
tions and mixed states.

Since this work first appeared as a preprint [18], two
subsequent preprints appeared that deal with our incon-
sistency. Sarandy et al. [19] have presented a simplified
form of the inconsistency which they regard as a valida-
tion of the standard statement of the AT.We interpret their
work as an alternative explanation of the cause of the
inconsistency and a second demonstration that the stan-
dard statement of the AT, taken as it is, can lead to
contradictory results. Pati and Rajagopal [20] consider a
different form of inconsistency. Comments on their work
and the present inconsistency have been made in Ref. [21].
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