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Dynamical Role of Anyonic Excitation Statistics in Rapidly Rotating Bose Gases
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We show that for rotating harmonically trapped Bose gases in a fractional quantum Hall state, the
anyonic excitation statistics in the rotating gas can effectively play a dynamical role. For particular
values of the two-dimensional coupling constant g � �2� �h2�2k� 1�=m, where k is a positive integer,
the system becomes a noninteracting gas of anyons, with exactly obtainable solutions satisfying
Bogomol’nyi self-dual order parameter equations. Attractive Bose gases under rapid rotation thus
can be stabilized in the thermodynamic limit due to the anyonic statistics of their quasiparticle
excitations.
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Introduction.—Classical and quantum properties of
atomic Bose gases when they are set under rotation
were intensely studied in the last couple of years from
both the experimental [1–3] and the theoretical sides [4–
11]. Of particular interest is the behavior of rapidly rotat-
ing two-dimensional (2D) gases in a fractional quantum
Hall state, corresponding to an electrically neutral, bo-
sonic analog of ultrapure 2D electron gases in very strong
magnetic fields, which exhibits strongly correlated phys-
ics [4,5]. It is well established that fractional quantum
Hall states possess anyonic excitations above an incom-
pressible ground state [12], carrying certain fractions � of
the ‘‘elementary’’ charge [13], where � < 1 is the filling
factor of the lowest Landau level. On the low-energy level
of an effective field theory, these systems are described by
their coupling to a fictitious statistical gauge field A	.
This is known as a Chern-Simons effective field theory
description of the fractional quantum Hall effect [14,15].

In the thermodynamic limit, a system of untrapped
bosons with attractive interaction is unstable against col-
lapse and can stably exist only for a finite trapped number
of particles [16,17]. The purpose of the present contribu-
tion is to point out that a 2D harmonically trapped rotat-
ing Bose gas with attractive interactions can be stabilized
by the statistical gauge field associated with the fractional
charge of its quasiparticle excitations. The anyonic nature
of the excitations can therefore play a dynamical role, in
that it can compensate the negative coupling constant
associated with the interaction of atomic bosons. This
dynamical role is due to the fact that the statistical
‘‘magnetic’’ field is proportional to the density of the
system, resulting in particle-statistical flux composites.
For a special value of the statistics parameter � �
�=�2��1� ��� or, correspondingly, for a given �, at a
particular value of the coupling constant g �
�2� �h2���1 � 1�=m, the interaction can effectively be
eliminated entirely and make the system behave as an
interaction-free gas of anyons. In physical terms, the
stabilization of the attractively interacting gas in the frac-
tional quantum Hall state against the collapse to a sin-
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gular distribution may be understood by the existence of a
2D analog of Fermi pressure,‘‘anyonic’’ pressure.

The order parameter distribution for the free anyon gas
can be found analytically provided the Bogomol’nyi self-
duality identities are satisfied [18], which then leads to
topological vortex solutions for the Ginzburg-Landau
order parameter [19–24]. Rotating atomic Bose gases
offer a unique opportunity to actually prepare and detect
them rather directly and with great accuracy, and to study
their breather soliton dynamics [20,21]. Starting from the
statistical mechanics of particles in the plane, interacting
by contact potentials, other investigations on obtaining a
free anyon gas can be found in [25]; however, only re-
pulsive interactions were treated, without externally im-
posed magnetic or rotation fields.

Abelian statistical gauge field.—We assume that we
have a 2D gas in the fractional quantum Hall regime
which admits a Ginzburg-Landau type description in
terms of a Chern-Simons theory [15]. A statistical �2�
1�D gauge three-potential A	 may be implemented by
showing the physical equivalence of the two Hamiltonian
theories with A	 � 0 and A	 � 0 on the quantum level
[14]. The primary effect of the statistical gauge potential
is that it allows for an additional Chern-Simons term in
the low-energy action ( �h � 1):

S� �
Z
d2xdt

�
i�	�@t � iA0���

1

2m
jD�j2

� V�x�j�j2 �U�j�j2� �
�

4
����A�F ��

�
: (1)

Here, D is the gauge covariant spatial derivative defined
in Eq. (2), the Abelian field strength of the statistical
gauge field reads F �� � @�A� � @�A�, and U�j�j2�

is the interaction energy density. We use relativistic nota-
tion, i.e., �;�; �;	 � 0; 1; 2; the spacetime metric is
diag�1;�1;�1� and repeated indices are summed over.
All higher derivative terms in the statistical gauge poten-
tial (e.g., Maxwell terms / F ��F

��) are left out in this
low-energy, low-momentum expression [26].
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Classically, the momenta of the particles making up
the system are given by the decomposition p � mv�
�A�A (the spatial part of A	 is denoted A), so that
the gauge covariant derivative in the quantum domain is
given by

D � r� i�A� iA: (2)

Here, A is the external U(1) vector potential of rotation,
yielding the Coriolis force, with r
A � 2
 twice the
applied rotation field 
 perpendicular to the 2D plane,
and � � m is the coupling constant for a rotating Bose
gas. The total scalar potential

V�x� � Vtrap �
1
2m


2r2 (3)

consists of (harmonic) trapping potential and centrifugal
potential. Because of the Chern-Simons term, the field
strength of the statistical gauge field is given by the
particle current as follows:

�

2
�	��F �� � J	: (4)

The homogeneous Maxwell equation for the statistical
field strength, @	F �� � @�F 	� � @�F �	 � 0, is then
automatically equivalent to current conservation,
@	J	 � 0.

The statistical gauge field strength is according to (4)
dual to the current. This means, in particular, that the
statistical magnetic field is proportional to the density:

��B � j�j2 � �: (5)

That is, the order parameter modulus is inextricably
linked to the statistical flux, and particle-flux composites
are formed. Taking �> 0, by fixing 
> 1, the statistical
magnetic field cancels part of the applied ‘‘magnetic,’’
i.e., rotation field in the canonical momentum p, and the
vector potential effectively acting on the particles is
reduced. Defining the Landau level filling factor of the
original bosonic particles to be � � ��0=m
 [4,11], with
�0 � j�0j

2 a homogeneous background density, we have
� � �=�2��1� ���. In particular, for the � � 1=2 any-
ons discussed in [5], � � 1=2�. The effective magnetic
flux of particle-statistical flux composites ~� �H
dx � �A�A=m� � ��0, then is reduced compared to

the bare rotational flux quantum �0 �
H
dx �A � 2�=m

obtained for vanishing A [27].
The Ginzburg-Landau energy functional of the gas in

the rotating frame, corresponding to (1), is composed as
usual of kinetic, scalar potential and interaction energy,

H �
Z
d2x

�
1

2m
jD�j2 � V�x�j�j2 �U�j�j2�

�
: (6)

In the rapid rotation limit 
 ’ !?, Vtrap �
1
2 m!

2
?r

2 is
(nearly) cancelled by the centrifugal potential, V ’ 0,
where !? is the trapping frequency perpendicular to
the axis of rotation.
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Using the Bogomol’nyi decomposition [18] for the
kinetic energy term in the integral (6),

jD�j2 � j�D1 � iD2��j2 �r
J�B�� 2m
�; (7)

and relation (5), we can rewrite the Hamiltonian in two
different ways corresponding to the � sign in (7) to read

H �
Z
d2x

�
1

2m
j�D1 � iD2��j2 � V�x�j�j2 �U�j�j2�

�
1

2

�
1

m�
j�j2 � 2


�
j�j2

�
: (8)

We have neglected the term involving the curl of the
matter current �r
 J, as it amounts, after integration,
to a surface contribution vanishing for sufficiently well-
behaved current fields and/or well outside the boundary of
the rotating gas. We infer from the last term in the second
line of (8) that, due to the proportionality of density and
statistical magnetic field expressed by Eq. (5), and em-
ploying the identity (7), part of the kinetic energy
jD�j2=2m can effectively act as interaction energy.

The potential in the Ginzburg-Landau energy func-
tional may generally be expanded

U �j�j2� �
g
2
j�j4 �

�
6
j�j6 � � � � ; (9)

where g is the value of the two-body coupling constant in
the fractional quantum Hall state; for the sixth order
stability of the system, � > 0 is required. Taking into
account the coefficient of the quartic term in (8) resulting
from the above expansion and Eqs. (4) and (7), the effec-
tive interaction coupling of the system is now defined as

geff � g�
1

m�
: (10)

If we choose the relation of coupling constant and statis-
tics parameter to be g � �1=m�, we see that we have
effectively eliminated the quartic interaction coupling
term. By ‘‘interaction-free’’ we mean that we have can-
celled the interaction g by a proper choice of the statistical
magnetic field B, while the covariant derivatives D1 and
D2 do, of course, still implicitly contain the statistical
gauge fields A1 and A2, and therefore, due to (4), the
density distribution.

We conclude from relation (10) that a large original
coupling g can be converted to a geff approaching zero.
Because of the statistical interaction, a negative g system,
unstable towards collapse in the thermodynamic limit
[16], may be stabilized by the statistical interaction, in
the sense that there are nonsingular distributions ��x; t�
(see below), with finite energy. The value g � gc �
�1=m� defines a critical negative coupling strength,
below which the gas cannot be stabilized for a given �.

In the limit that the coefficient of j�j4 vanishes, geff �
0 in (10), the problem of determining the ground state of
zero energy becomes exactly solvable (neglecting the
small j�j6 term in the Ginzburg-Landau expansion).
The energy per particle then assumes its lower limit
160403-2
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H0=N � �
, provided the self-duality (Bogomol’nyi)
constraints [18]

�D1 � iD2��� 0 (11)

are satisfied. To protect the self-dual states of effectively
zero coupling, there is an energy barrier to neighboring
states in � space, which do not have the property that
geff � 0. The magnitude of this energy barrier depends
on the (positive) contribution of the j�j6 term in the
Ginzburg-Landau expansion of U�j�j2�.

Jackiw and Pi [19] have shown that solving the self-
duality Eqs. (11) above, in the case of zero ‘‘external’’
field, i.e., in the problem with just the statistical gauge
field present and trapping and rotation turned off, V � 0
and 
 � 0, is equivalent to solving the Liouville equation

� ln� � �2�=� �V�x� � 
 � 0�; (12)

whose complete set of solutions is known [28]. To obtain
regular and non-negative solutions of the Liouville equa-
tion, the sign of the right-hand side must be chosen
opposite that of �. Thus the lower, minus sign is appro-
priate for �> 0. The general solution of the Liouville
Eq. (12) in the plane of complex z � x� iy reads ��z� �
4�jf0�z�j2=�1� jf�z�j2�2, where f�z� is an arbitrary holo-
morphic function. Radially symmetric vortex solutions,
for which � �

����
�

p
exp�in%�, take the form, choosing

f�z� � �z0=z�n,

��r� �
4�n2

r2

��
r0
r

�
n
�

�
r
r0

�
n
�
�2
; (13)

where n is an integer and r0 an arbitrary length scale
reflecting the scale (dilation) invariance of (12); for r!
0, ��r� / r2�n�1�, and for r! 1, ��r� / r�2�n�1�.

The solutions of (11) with a constant external mag-
netic/rotation field (corresponding to our being in the
rotating frame), and a linearly increasing electric field
in the plane (corresponding to our linear trapping and
centrifugal forces) can be obtained from the vortex sol-
itons of Jackiw and Pi: Adding these additional external
fields, the problem (still) is quadratic [20–22]. The scalar
potential in the Hamiltonian (8), i.e., the effective har-
monic trapping field, is very small close to criticality,
V � 1

2 m!
2
?r

2 � 1
2 m


2r2 ’ 0, and can be neglected. The
classical problem of finding the solution of (11) in an
external rotation field then corresponds to the problem
of finding the (semiclassical) Landau levels of anyons
[20].

To generate time-dependent vortex soliton solutions,
one constructs a coordinate transformation, whose in-
verse effectively removes the external field and thus leads
us back to (13) [20–22]. The most important feature,
apart from the cyclotron motion executed by the soliton,
which results from this transformation, is that the size of
the soliton breathes if the background �0 � 0: The scale
factor in (13) becomes time dependent according to r0 !
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r0 cos�
t�. Hence, the soliton size oscillates with the
applied rotation frequency. Furthermore, the energy of
the soliton diverges for n � 1 and finite r0, and thus
according to (13) only n � 2 configurations with � � 0
at the vortex line can be generated; note that for n � 1 the
density (13) at the origin has a finite value. The statistical
vector potential A decreases at large distances from the
center of the vortex line like 1=r, as required for a
topological vortex of a given quantized circulation. It
should also be stressed that the feature that there exists
a breather soliton solution in the presence of the external
rotation field persists when g � gc and there is no self-
duality fulfilled according to (11); however, in that case
simple analytical solutions like the one displayed in (13)
cannot be obtained, because the Ginzburg-Landau equa-
tions then remain essentially nonlinear.

Rescaling the coordinate vector via x � ~x
���������������
�=2�0

p
,

the typical length scale of inhomogeneous solutions of
Eqs. (11) is set by &0 �

���������������
�=2�0

p
�

�����������������������
1=2m�0jgj

p
, the ana-

log of the coherence length in the repulsive case. The
topological, i.e., quantized circulation vortex solutions in
a rapidly rotating gas with g < 0, resulting from the
boosted solutions (13), then are cousins of their counter-
parts in the repulsive-interaction superfluid. In the latter
case, the core size of the vortices depends on the applied
rotation rate [9] (for an experimental verification see the
second reference of [2]). Here, by contrast, the scale r0 in
Eq. (13) is essentially a free parameter, because the total
energy of the soliton is minimized for r0 � 0 [21].
Therefore, an external force, created by a blue-detuned
laser, for example, has to be applied to the gas to generate
a soliton with a finite value of r0. It should be noted that

 � 0 is strictly necessary to obtain any solution of
nonzero �0; i.e., the symmetry breaking expressed by
�0 � 0 is induced by the rotation of the gas: The solu-
tions of (12), e.g., the vortex solution in Eq. (13), are all
asymptotically vanishing, �0 � 0 if 
 � 0.

Non-Abelian case.—The previous considerations can
be generalized to the case of a noncommuting statistical
gauge field (cf., e.g., [23,24]), which is of potential rele-
vance in rapidly rotating spinor gases. An outline of such
a non-Abelian generalization reads as follows. The non-
Abelian field strength is

F �� � @�A� � @�A� � �A�;A��; (14)

where the noncommuting gauge field reads A	 �

Aa
	Ta, using the Lie algebra of the anti-Hermitian gen-

erators Ta of the non-Abelian group, �Ta; Tb� � fabcT
c

(summation over a; b; c is implied; fabc are the structure
constants of the Lie algebra). The Chern-Simons-Gauss
law (5) reads in its non-Abelian form

B �
i
�
Ta� yTa �; (15)

where  is the order parameter field, transforming ac-
cording to some given representation of the gauge group.
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The scalar and vector interactions in a spinor conden-
sate may be parametrized to read [29,30]

Vint �
c0
2
 y
i  

y
j  j i �

c2
2
 y
i  

y
k T

a
ijT

a
kl l j; (16)

where the summation indices i; j; k; l cover the matrix
index of the particular representation of  chosen. We
infer, using (15), that the effective coefficient of the
quartic spin-spin interaction term may in analogy to
(10) be defined, restricting ourselves to the lower sign,

�c2�eff � c2 �
1

m�
: (17)

The statistical interaction therefore is able to change,
assuming c0 > 0, the spin-spin interaction from c2 < 0
(ferromagnetic) to c2 > 0 (‘‘polar’’ [29]). However, for a
two-parameter interaction Hamiltonian like (16), with
c0 � 0, there is no self-dual Bogomol’nyi point in pa-
rameter space. Only at c0 � 0, such a point exists; then,
the system, in general, can support vortices obeying non-
Abelian fractional statistics. The matter density compo-
nents associated with these fractional vortices are solu-
tions of the Toda equation, which generalizes the
Liouville Eq. (12) [23,24].

Conclusion.—We have established the fact that a rap-
idly rotating Bose gas with attractive self-interaction can
be made manifestly stable in a given fractional quantum
Hall state, such that for certain values of the negative
coupling constant the Ginzburg-Landau matter wave
field exhibits self-duality. The resulting free anyon gas
interpolates between the extreme cases of bosons (zero
statistical pressure at T � 0) and fermions (maximal
statistical pressure at T � 0), and the original bosonic
gas is protected against collapse because of this effective
anyonic pressure. The preparation and experimental veri-
fication of this particular fractional quantum Hall state
should, in principle, be possible starting from a rotating
Bose gas with small positive interaction coupling and
high angular momentum L � N�N � 1�=2� � O�N2�.
To avoid the problem of stabilizing a bulk gas at these
very large angular momenta, one can conceive of putting
the system on an optical lattice [31]. Starting from the
small positive interaction coupling Bose gas, one switches
over a close-lying Feshbach resonance to the negative
coupling strength side of the resonance. At the end point
of the sweep a coupling is chosen which fulfills g �
�2��2k� 1�=m, corresponding to a fractional quantum
Hall state at filling � � 1=2k.
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Fedichev and Nils Schopohl.
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