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Collective Rabi Oscillations and Solitons in a Time-Dependent BCS Pairing Problem
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Motivated by recent efforts to achieve cold fermions pairing, we study the nonadiabatic regime of the
Bardeen-Cooper-Schrieffer state formation. After the interaction is turned on, at times shorter than the
quasiparticle energy relaxation time, the system oscillates between the superfluid and normal state. The
collective nonlinear evolution of the BCS-Bogoliubov amplitudes up, vp, along with the pairing
function �, is shown to be an integrable dynamical problem which admits single soliton and soliton
train solitons. We interpret the collective oscillations as Bloch precession of Anderson pseudospins,
where each soliton causes a pseudospin 2� Rabi rotation.
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Dilute fermionic alkali gases cooled below degeneracy
[1] are expected to host the paired BCS state [2,3]. One of
the attractive features of this system is control of interac-
tion strength achieved by using magnetically tuned
Feshbach resonances [4–9] which provides access to the
strong coupling BCS regime. Also, since the character-
istic energy scales in atomic vapors are relatively low,
while coherence times are long, one can perform time-
resolved measurements on the intrinsic microscopic time
scales, and explore a range of fundamentally new phe-
nomena in the time dynamics of the paired state. These
new prospects helped to revive interest in some of the
basic issues of the BCS pairing problem [10–15].

In particular, one important question has to do with
formation of the BCS state in cold gases [16]. The dy-
namics of the superconducting BCS state in metals has
been a subject of long-time active interest [17]. The
regimes considered can be broadly classified into two
groups, with regard to how the relevant time scales com-
pare to the quasiparticle energy relaxation time �� and
the order parameter dynamical time ��, estimated as the
inverse increment of Cooper instability [18,19]. For �� �
��, quasiparticles quickly reach local equilibrium pa-
rameterized by a time-dependent order parameter ��t�
and thus a time-dependent Ginzburg-Landau equation for
��t� can be employed. However, as noted by Gor’kov and
Eliashberg [20], the condition �� � �� holds only in
relatively exotic situations, including a close proximity
of a transition point, �2=Tc � �h=��, or a fast pair break-
ing (e.g., due to paramagnetic impurities).

The opposite limit, �� � ��, which holds at tempera-
tures not too close to critical, can be described by a
Boltzmann kinetic equation for quasiparticles and a
self-consistent equation for ��t� [21,22]. The validity of
this approach requires adiabaticity on the �� time scale of
both the quasiparticle distribution and the external pa-
rameters time variation. In other words, free oscillations
of j�j characterized by!� ��1

� should not be excited. At
T � Tc, when �� ’ �h=� [23], this is just the �h!� �
0031-9007=04=93(16)=160401(4)$22.50 
criterion. (In contrast, low frequency phase oscillations
are in the realm of the adiabatic picture [24,25].)

Here we analyze free oscillation of BCS pairing in a
cold gas, characterized by frequencies �h! & 2�, and
treat the nonadiabatic limit not accounted for by these
two approaches. The currently studied systems [26–28]
are described by the nonretarded BCS pairing theory [29]
which predicts Tc 	 0:3EFe

�1=�, � 	 2
� kFjaj, with the

scattering length a that has a resonance dependence on
the external magnetic field [1]. To estimate the BCS
parameter values, we consider magnetic fields not too
close to the resonance where one can neglect the presence
of the molecular field [5] and use the weak coupling
theory. At particle density n 
 1:8� 1013 cm�3 [26],
which corresponds to EF 
 0:35 �K, and the scattering
length a 
 �50 nm we have Tc 
 0:006EF. An estimate
of the dynamical time obtains �� ’ �h=�0 
 2 ms, while
the quasiparticle energy relaxation time is ���� ’
�hEF=�

2
0 
 200 ms 	 100��, consistent with weakly

damped oscillations of �.
The cold fermionic gases present a completely new

situation from yet another point of view.While relaxation
rates in these systems are quite slow, the external parame-
ters, such as the detuning from resonance, can change
very quickly on the time scale of ��. This enables the BCS
correlations to build up in a coherent fashion while the
system is out of thermal equilibrium. In such a situation,
theory must account not only for the order parameter
evolution, but also for the full dynamics of individual
Cooper pairs and quasiparticles. In contrast, the changes
of the quasiparticle distribution in superconducting met-
als are described by parameter variation slow compared
to �� and quasiparticle spectrum which evolves adiabati-
cally, without exciting oscillations of �.

In this Letter we consider the situation when the pair-
ing interaction is turned on abruptly on a time scale �0 �
��; ��, and explore the time evolution of the pairing
instability of Fermi gas. For simplicity, we focus on the
case of a gas sample size smaller than BCS correlation
2004 The American Physical Society 160401-1
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length � 	 �h2kF=m�0 (for the parameters listed above,
� ’ 24 �m is in excess of the gas sample size [26] L 

18 �m). In the ‘‘zero-dimensional’’ limit � ’ L one can
ignore aspects related with spatial dependence, such as
inhomogeneous phase fluctuations and vortices.

At not too long times, t� ��, the dynamics is gov-
erned by nondissipative equations which exhibit a non-
linear time evolution. The notion of the quasiparticle
spectrum is irrelevant in this regime, and theory can
rely neither on the kinetic equation, nor on the time-
dependent Ginzburg-Landau equation. Our approach de-
scribes the BCS state buildup and accounts for coherent
dynamics of individual Cooper pairs. We shall focus on
the zero temperature case, when �� ’ �h=�, and show that
Cooper instability results in a periodic oscillation of j�j.

This regime can be described by the BCS Hamiltonian

H 	
X
p;�
�pa

�
p;�ap;� �

��t�
2

X
p;q
a�p"a

�
�p#a�q#aq"; (1)

with the coupling turned on abruptly, ��t� 	 ���t� t��.
The main result of this work is that the time-dependent

problem (1) is integrable. We construct a generalized
time-dependent many-body BCS state, exact for the sepa-
rable Hamiltonian (1), which has the form

j��t�i 	
Y
p
�up�t� � vp�t�a

�
p;"a

�
�p;#�j0i: (2)

The Bogoliubov mean field treatment, which gives a state
of the form (2), relies on the ‘‘infinite range’’ form of the
pairing interaction in (1) (i.e., equal coupling strength for
all �p;�p�, �q;�q�). Since the latter does not depend on
the system being in equilibrium, one can introduce a
time-dependent mean field pairing function

��t� 	 �
X
p
up�t�v�p�t� (3)

The amplitudes up�t�, vp�t� can be obtained from the
Bogoliubov–deGennes equation

i@t
up
vp

� �
	

�p �
�� ��p

� �
up
vp

� �
(4)

with � defined self-consistently by Eq. (3).
We recall that the unpaired state is a self-consistent,

albeit unstable, solution of Eqs. (4) and (3) with � 	 0:

u�0�p �t� 	 e�i�pt���p�; v�0�p �t� 	 ei�pt����p�: (5)

The stability analysis [19] shows that the deviation from
the unpaired state grows as ��t� / e�te�i!t, with the
growth exponent � and the constant ! given by

1 	 �
X
p

sgn�p
2�p � �

; � 	 !� i�: (6)

Being similar to the BCS gap equation at T 	 0, Eq. (6)
yields the exponent close to the BCS gap value, � ’ �0,
�� ’ ��1

0 . (In the weak coupling limit, ! 	 0 due to the
particle-hole symmetry, and thus � 	 �0.)
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At T 	 0, a soliton solution of Eqs. (4) and (3), can be
constructed most naturally in terms of the variable

wp 	

�
up=vp; �p > 0
vp=up; �p < 0

(7)

Consider first the case �p > 0. From Eq. (4) we obtain

i@twp 	 2�pwp � ��t� ����t�w2
p (8)

with � defined by (3) and limt!�1wp 	 1 set by (5).
Motivated by the stability analysis (6), we try the

ansatz ��t� 	 e�i!t#�1�t� with #�t� real, and

wp�t� 	 2�pf�t�� i _f�t�; f�t� �
1

��
	 e�i!t#�t�: (9)

Substituting this in Eq. (8), we obtain an equation

i�p _#� �# 	 �p��p#� i _#� �
1

#
�1� ��p#� i _#�2� (10)

with �p 	 2�p �!. Remarkably, the terms with �p can-
cel, and Eq. (10) takes the same form for all the states,

# �# 	 _#2 � 1; (11)

which justifies the ansatz (9). By a substitution # 	 e%,
Eq. (11) can be brought to the form �% 	 e�2%. Integrating
the latter equation, obtain _%2 � e�2% 	 �2, with � an
integration constant. This yields _#2 	 �2#2 � 1,

#�t� 	
1

�
cosh��t� t0�; ��t� 	

�e�i!t

cosh��t� t0�
: (12)

Modulus j�j growing first, then decreasing and taking the
system back to the unpaired state (Fig. 1, upper left),
reflects the absence of dissipation. The peak time t0 is
set by the initial condition at the switching time.

For �p < 0, wp 	 vp=up, the form of Eq. (8) remains
the same up to a sign change �p ! ��p and the permu-
tation � $ ��. Accordingly, the ansatz for wp in this
case is w�p<0�t�	2j�pjf�t�� i _f�t�, f�t����1	ei!t#�t�,
yielding an equation identical to Eq. (11).

The last step is to analyze the requirements on this
solution due to the self-consistency condition (3). For
that, we rewrite Eq. (3) in terms of wp�t� as

��t� 	 �
X
�p>0

wp�t�

1� jwp�t�j
2 � �

X
�p<0

w�
p�t�

1� jwp�t�j
2 (13)

and note that both the right and the left hand side have the
same time dependence, and are equal to each other pro-
vided that the quantity � 	 !� i� satisfies Eq. (6). This
means that the gap modulus j��t�j peak value is equal to
the instability exponent � defined by (6).

At T 	 0, in the case of a constant density of states, �
is equal to the equilibrium BCS gap �0, while ! vanishes
due to particle-hole symmetry. Thus, remarkably, the
modulus j��t�j in this case peaks exactly at �0. To illus-
trate the collective dynamics in the soliton solution, we
160401-2
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plot the trajectories up�t�, vp�t� on the Bloch sphere r21 �
r22 � r23 	 1 using the parameterization

r1 � ir2 	 2upv
�
p; r3 	 jupj

2 � jvpj
2 (14)

(Fig. 1, left). Here, as well as in the soliton train solutions
discussed below [Eq. (23)], each state �up; vp� completes a
full Rabi cycle per soliton. The trajectories, which are
small loops for the pairs with large energies �p, turn into
a big circle as �p tends to the Fermi level.

To gain further insight, we reformulate the BCS ap-
proach, following Ref. [23], in terms of pseudospins
associated with individual Cooper pair states. ‘‘Pauli
spin’’ operators ��

p � 1
2 ��

x
p � i�yp� can be assigned to

each pair of fermions with opposite momenta as follows

��
p 	 a�p"a

�
�p#; ��

p 	 a�p#ap"; (15)

and �zp � ���
p ; ��

p � 	 a�p"ap" � a�p#a��p#. This allows us
to map the problem (1) onto an interacting spin problem

H 	
X0

p
�p�zp � 2�

X0

p;q
��

p ��
q (16)

where prime means a sum over the pairs �p;�p�. Since all
the spins interact with each other equally, the mean field
theory here is exact, just like for the BCS problem. The
mean field Hamiltonian for each spin is

H p 	 bp � �p; bp 	 ���0;��00; �p�: (17)

Note that, while the z component of bp, given by the
single particle energy, is spin-specific, the transverse
component, the same for all of the spins, satisfies

� � �0 � i�00 	 �
X
q
h��

q i (18)

which is analogous to the BCS gap relation. In the ground
state the spins, aligned with bp, form a texture [23], with
spin rotation described by the Bogoliubov angle.

The dynamical problem of interest can be cast in the
form of Bloch equations for the spins,

_� p 	 i�Hp; �p� 	 2bp � �p (19)
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with bp defined self-consistently by (17) and (18).
Equation (19), linearized about the texture state, de-
scribes collective excitations [23,30]. Linearized about
the unpaired state, it describes Cooper instability (6).

The Bloch dynamics Eq. (19), which is linear both for
operators and expectation values, is easy to simulate. In
the presence of thermal noise, we observe (Fig. 2) an
orderly train of the cosh solitons, indicating soliton ro-
bustness and stability (cf. other nonequilibrium states
studied in Ref. [31]). Adding damping to the Bloch equa-
tion ensures relaxation to the ground state (Fig. 2).

We note that Volkov and Kogan [30], who investigated
the weak oscillation regime, found nonexponential decay
of linearized oscillations, interpreted as collisionless
damping [18,30] caused by mixing of the oscillations of
� with quasiparticle states slightly above the gap.

Let us now consider multisoliton solutions. As above,
we assume the pairing function of the form ��t� 	
e�i!t��t�, with ��t� real. After the phase factor e�i!t

is eliminated by going to Larmor frame, Eq. (19) for the
average spin components ri 	 h�ipi becomes

_r 1	��pr2; _r2	�pr1�2�r3; _r3	�2�r2 (20)

(�p 	 2�p �!). This problem can be solved by the an-
satz

r1 	 Ap�; r2 	 Bp
_�; r3 	 Cp�

2 �Dp: (21)

The first and the third Eq. (20) are satisfied by (21)
provided Ap 	 ��pBp and Bp 	 �Cp, while the second
Eq. (20) is consistent with the normalization condition
r21 � r22 � r23 	 1, and thus yields

C2
p�2p�2 � C2

p
_�2 � �Cp�

2 �Dp�
2 	 1: (22)

Equation (22) will take the same form for all the spins,

_� 2 � ��2 � �2
����

2 ��2
�� 	 0; �� � �� (23)

provided that the constants Dp, Cp are chosen as �D2
p �

1�=C2
p 	 �2

��
2
�, 2Dp=Cp 	 �2p � �2

� � �2
� with the

sign factor sgn�p. Equation (23) defines an elliptic func-
tion ��t� oscillating periodically between �� and ��. At
�� � ��, the solution is a train of weakly overlapping
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FIG. 1 (color online).
Coherent BCS dynamics.
Above: the soliton solutions os-
cillating in the limits �� �
��t� � ��, (23). Below: trajec-
tories of individual Cooper pair
states on the Bloch sphere (14).
Note that each state completes a
full 2� Rabi cycle per soliton.
The dashed-line and solid-line
curves correspond to the ener-
gies �p above and below the
Fermi level.
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FIG. 2 (color online). Bloch dynamics _rp	2beff
p �rp for 103

spins with a constant density of states. Damping is included via
beff
p 	 bp � �bp � rp. Initial conditions r3;p 	 tanh�12.�p�,

�r1� ir2�p	e
i%p �1�r23�

1=2, with .�1�T	0:1�0 and random
uncorrelated %p were used to model thermal noise.
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solitons (12) with �� 	 � and ri�t� that tend to the ideal
Fermi gas values r3 	 �sgn�p, r1;2 	 0 between the sol-
itons (Fig. 1, left).

The real part of the self-consistency relation (18),

1 	 �
X
p

�psgn�p
���2p � �2

� ��2
��

2 � 4�2
��

2
��

1=2
(24)

fixes one of the constants ��, leaving the other one free.
The ratio ��=�� controls the intersoliton time separa-
tion. As it varies from 0 to 1, the soliton frequency
increases, and the nonoverlapping solitons (12) gradually
merge, turning into weak harmonic oscillations (Fig. 1).

The imaginary part of Eq. (18) fixes the value of the
frequency shift! (we recall that! � 0 in the presence of
charge asymmetry). At �� � ��, Eq. (24) turns into
Eq. (6) which, as we found above, defines the amplitude
of a single soliton. In the opposite limit, �� ! ��,
Eq. (24) coincides with the BCS gap equation.

There is an interesting relation between our problem
and the self-induced transparency phenomenon [32]. In
the latter, an optical pulse interacting with an ensemble of
atoms can dissipate its energy by inducing resonant Rabi
transitions in the atoms. However, when the pulse dura-
tion is tuned so that the atoms complete a full Rabi 2�
cycle as the pulse goes by, the pulse sustains itself and
propagates without dissipation. Our Bloch equations bear
striking similarity to those of Ref. [32], where the atoms’
polarization is employed to provide feedback on the pulse
instead of our BCS self-consistency relation.

Before concluding, we note that the dynamics at finite
temperature, in the regime described by �� � ��, re-
mains an open problem. In particular, we cannot rule
out the possibility of chaotic behavior. The relatively
simple periodic time dependence found at T 	 0 arises
due to strong coupling of the low-energy quasiparticle
states and the oscillations of �. In contrast, at T�� � �h,
only a small fraction of thermally excited states with
�p � �h=�� fully participate in the oscillations ��t�, while
a larger and a weaker coupled group, �h=�� � �p � T,
plays a role of thermal bath, providing dissipation.
160401-4
In summary, this work provides an exact solution for
the BCS pairing formation problem. In the nonadiabatic
regime, the dynamics is dissipationless and nonlinear.
Soliton train solutions are obtained analytically and dem-
onstrated to be generic and robust by a simulation.
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