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Comment on ‘‘Universal Decoherence in Solids’’

In a recent Letter [1], Chudnovsky studied the oscil-
lations of a quantum particle in the double-well potential
coupled to a solid. He derived the universal lower bound
on the decoherence due to phonons for the case that the
oscillation frequency !0 is small compared to the Debye
frequency !D. In this Comment, we show that his for-
mula for the decoherence rate � has a limited range of
validity and is not applicable to evaluation of the width of
a low-energy optical mode considered in Ref. [1] as an
example. This is due to unjustified use of the Fermi golden
rule for calculation of �. We present a more general
expression for the probability of the phonon-induced
transition. For clarity, we restrict ourselves to the case
of zero temperature and assume isotropic acoustic pho-
nons with the linear dispersion law !k� � ck, where k is
the wave vector, � is the polarization, and c is the speed of
sound.

To calculate the decoherence rate for the case of a
symmetric double-well potential U�R�, Chudnovsky
makes use of the Fermi golden rule and obtains
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where m is the particle mass, X0 is the half of the distance
between the degenerate minima of U�R�, � is the density
of the crystal, and V is the normalizing volume. The
value of �h!0 equals the gap between the ground and the
first excited state of the particle. Let us recall that Eq. (1)
follows from the approximation [2]
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for the probability Wif�!; t� to find a particle in the state
jfi at a time t if it is in the state jii at t � 0 and interacts
with the harmonic field V̂�t� � F̂e�i!t � H:c: Here
�h!0 � Ei � Ef. The approximation (2) for Wif�!; t� re-
sults from the first-order perturbation theory and is valid
if (i) Wif�!; t� 	 1 and (ii) the time t is sufficiently long,
so that one can make use of the relation [2]
sin2�"t�=�t"2 � ��"�.

If the harmonic field V̂�t� is associated with a phonon
having the frequency !k�, then, taking into account that
the displacements produced by the phonons with different
wave vectors are not correlated, one has for the total
transition probability
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where Fif�k; �� is the matrix element for the transition
jii ! jfi due to the emission of a phonon �k; ��. The form
158901-1 0031-9007=04=93(15)=158901(1)$22.50 
of Fif�k; �� depends on the specific nature of the states jii
and jfi. For the problem studied in Ref. [1] it is
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where e� are the unit polarization vectors. Then, making
use of the approximation (2), one has

W�1�
if �t� �

2�
�h

X
k;�

jFif�k; ��j2�� �h!k� � �h!0�t � �t; (5)

where � is given by Eq. (1).
To quantify the applicability of the approximation (5),

let us analyze the expression (3) for Wif�t�. One can
roughly distinguish two contributions to Wif�t�. The first
comes from the ‘‘resonant component,’’ i.e., from the �-
function-like peak of sin2�!k��!0
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2 as a

function of k at k0 � !0=c, with the height t2=4 and the
width �1=ct. It leads to Eq. (5). The second is from the
‘‘nonresonant background’’ of the phonon spectrum. At
!0 	 !D and t � !�1
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The Fermi golden rule (5) for evaluation of the decoher-
ence rate is justified if W�2�

if �t� 	 W�1�
if �t� 	 1, i.e., if the

resonant component prevails over the nonresonant one,
and the transition probability is much less than unity.
However, this is not always the case. In the example
considered in Ref. [1], where an atom of mass m� 3

10�23 g oscillates at !0 � 1012 s�1 in a double well with
X0 � 2
 10�8 cm in a crystal with �� 5 g=cm3 and c�
105 cm=s, one has W�2�

if �t� � 10 for !D � 5
 1013 s�1;
i.e., the standard perturbation theory, in general, and the
Fermi golden rule, in particular, break down. Strictly
speaking, in this case the notion of a ‘‘decoherence
rate’’ is misleading, and one has to make use of other
approaches to study the decoherence effects. On the other
hand, in the case of electron tunneling, one has W�2�

if �t� �
3
 10�4 and �� 3
 105 s�1 for the same set of pa-
rameters; i.e., the Fermi golden rule is valid at t > 10�9 s.

Finally, it is straightforward to generalize our consid-
eration to include the case of an asymmetric double well
and finite temperature.
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