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Fission of a Multiphase Membrane Tube
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A common mechanism for intracellular transport is the use of controlled deformations of the
membrane to create spherical or tubular buds. While the basic physical properties of homogeneous
membranes are relatively well known, the effects of inhomogeneities within membranes are very much
an active field of study. Membrane domains enriched in certain lipids, in particular, are attracting much
attention, and in this Letter we investigate the effect of such domains on the shape and fate of
membrane tubes. Recent experiments have demonstrated that forced lipid phase separation can trigger
tube fission, and we demonstrate how this can be understood purely from the difference in elastic
constants between the domains. Moreover, the proposed model predicts time scales for fission that agree
well with experimental findings.
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FIG. 1. Breakage of a heterogeneous membrane tube [16]. The
brighter (and thinner) section initially on the tip is a liquid-
disordered DOPC domain. Fission events occur at the sites of
formation of small domains resulting from phase separation.
The time between two consecutive pictures is 1 s. Scale bar,
10 �m.
Internal organization is one of the most intriguing
aspects of the cell. Living cells have to actively maintain
gradients of all sorts. Compartmentalization and traffick-
ing aid it in doing so, and both processes extensively use
membranes. Not only are the various organelles in eu-
karyotic cells surrounded by membranes, but the basic
intermediates in the intracellular transport pathways as
well are membrane structures such as tubes and vesicles
[1]. The generation and properties of these structures have
been extensively studied, and much is already known
about their biology, biochemistry [2], and biophysics
[3,4]. The emerging view is that the shape of the bilayer
membrane in vivo is controlled not only by embedded and
associated proteins [5] but also to a large extent by the
mechanical properties of the bilayer itself [3,6]. For
tubular structures, in particular, mechanical effects play
a major role: recent biomimetic experiments [4] have
shown that kinesin motors walking on microtubules can
exert pulling forces on the membrane and prompt the
formation of membrane tubes that resemble tubules iden-
tified in living cells.

The existence of small membrane domains with a lipid
composition that is markedly different from that of the
rest of the membrane (sometimes referred to as ‘‘rafts,’’
although considerable debate remains as to their precise
interpretation) appears to be another key element of intra-
cellular vesicular traffic [7] and also seems to be impli-
cated in a multitude of cellular processes [8]. The
heterogeneity in membrane composition can be attributed
to a phase transition leading to a local segregation be-
tween the various lipids constituting the membrane [9].
Sphingolipid domains, in particular, have been shown to
be more structured than a classical liquid membrane due
to specific interactions between their constituents [1].
Under appropriate conditions they tend to aggregate into
so-called liquid-ordered domains which are mechani-
cally stiffer than the rest of the bilayer. Recently, an
0031-9007=04=93(15)=158104(4)$22.50 
experimental model system of vesicles including ‘‘raft-
like domains’’ has been developed [10]; it provides an
elegant and efficient tool to study their properties in a
more controlled way than in vivo. This procedure allows
for systematic studies of the effects of membrane compo-
sition [11], temperature changes [9], and protein absorp-
tion on the domain [12].

The physics of membrane tube formation from homo-
geneous vesicles has been studied both theoretically
[13,14] and experimentally [15]. Recent experiments in-
volving one of us [16] study the interplay between lipid
domains and the behavior of tubes, by pulling tubes from
model membranes. Figure 1 illustrates one of the surpris-
ing conclusions of these experiments—a sequence of
snapshots taken at regular intervals (1 s between two pic-
tures) shows an initially homogeneous tube that first
undergoes phase separation (triggered experimentally by
photoinduced oxidation of cholesterol), and, after about
1 s, ruptures precisely at the phase boundary and discon-
nects. The two lipid phases are easily distinguished, once
separation has occurred, by the use of a fluorescent
2004 The American Physical Society 158104-1
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marker that preferentially sits in the liquid-disordered
domains. Furthermore, the same experiments show that
fission events such as these happen only in the phase
separated tubes—tubes in which the lipids are mixed
are essentially stable indefinitely.

Statement of problem and summary.—In this Letter, we
address the dramatic loss of stability following phase
separation from a mechanical point of view. We extend
the theoretical models developed for homogeneous tubes
[14] to study the junction between two distinct phases,
each of which far away from the junction has a tubular
shape. Experiments suggest that phase separation occurs
on a much faster time scale than fission and that the
nucleation of the two phases leads to the formation of
cylindrical domains between a more rigid and a less rigid
phase. Therefore, we do not model the dynamic of the
phase separation process [17]. The tube radii and the
junction length are generally small compared to the
length of each phase domain. In order to minimize the
interfacial energy between adjacent domains, the inter-
face rapidly becomes a circle perpendicular to the tube
direction. The coarsening stage of the phase separation
process proceeds very slowly to eventually form two
homogeneous phases in equilibrium, but this slow relaxa-
tion is always preempted by tube fission.

We assume here that the tube and junctions are axi-
symmetric with respect to the direction along which the
tube is pulled (the z axis). We consider one junction
between two semi-infinite tubes, each consisting exclu-
sively of one of the phases. Finite-size effects associated
with the limited size of individual domains, while possi-
bly relevant, fall outside the scope of the present Letter.
The small radius of the tubes (about 40 nm) does not
allow for a quantitative determination of the shape of the
junctions [16], and for this reason we restrict ourselves to
a minimal model which emphasizes the roles of the most
relevant physical parameters. We show that tube fission
can be driven either by the line tension or by the jump of
the elastic coefficients at the interface between the two
phases, and we compare the two processes, both of which
undoubtedly contribute in the experiments.

Model.—We use an elastic membrane free energy, as
introduced by Canham and Helfrich [18], and numeri-
cally determine equilibrium junction shapes. Figure 2
gives a schematic representation of the tube and the
coordinate system used in the following. Our axisymmet-
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FIG. 2 (color online). Schematic representation of the junc-
tion.
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ric surface is parametrized by the arc length s along the
contour and described by the local tube radius r�s� and the
angle  �s�. They are related by the geometric relations
_r � cos (dots denote derivatives with respect to s). The
interface is located at z � s � 0.

The free energy of the system is obtained by extending
the description of tubular membranes [14] to the specific
case of a biphasic tube [19,20] as follows:
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The two phases are denoted by � and 
, and for each
phase i the free energy is integrated over its membrane
area �i. The �i and ��i�G are the bending and Gaussian
rigidities of the respective phases. This free energy in-
cludes the bending energy to lowest order in the principal
curvatures, where H is the mean curvature and K the
Gaussian curvature. The two layers of the membrane are
assumed to be symmetric; both phases contain cholesterol
molecules which have a high flip-flop rate. Any stress due
to area differences between the leaflets or to an asymme-
try of the layers is thus quickly relaxed. Finally, Lagrange
multipliers �i are introduced to ensure a constant surface
in each phase. These �i are interpreted as surface ten-
sions. We take our tube to be infinite and assume the
presence of a lipid reservoir. In the experiments, such a
reservoir is provided by the large mother vesicles from
which the tubes are drawn. Provided the area per lipid
remains constant during the process, this implies a con-
stant surface tension in each of the phases.

The interface between the two phases is described by a
jump in the values of the bending rigidities �i and ��i�

G and
in the surface tension �i, and by a positive line tension �
at the interface @�. The last term in the free energy is the
work performed by the external force f needed to pull the
tube. We neglect the small effect of pressure [13].

The variational derivation of the shape equations of the
surface has been detailed elsewhere [21] and yields
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Far away from the junction, we recover homogeneous
cylindrical tubes with  � �=2 and Ri � ��i=2�i�

1=2.
Mechanical equilibrium implies that the forces at both
extremities are equal and that f � 2��2�i�i�1=2, which
imposes that ��=�
 � �
=��: the surface tension jumps
discontinuously across the interface.

The mismatch between constants such as the bend-
ing rigidities appears only in the boundary conditions
and strongly affects the interface shape. At the interface
158104-2
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(s � 0), four boundary conditions must be satisfied. Two
conditions are the continuity of the radius r�s� and the
angle  �s� [19]; two additional conditions stem from the
variational procedure and relate the first and the second
derivatives of the angle  on each side of the interface to
the values of r,  , ��, �
, ��G � �
G � ��G, and �.

Results.—Figure 3 illustrates the different effects that
line tension and differences in elastic rigidities individu-
ally have on the two-phase tube. The first possible dis-
continuity at the junction is a jump in bending rigidities
[Fig. 3(a)]. The ratio of the bending rigidities in the two
phases � � �
=�� fixes the ratio of the radii away from
the junction and of the surface tensions in the two phases.
Without line tension and jump in Gaussian rigidity, the
radius decreases smoothly from the values of the more
rigid phase to the value in the less rigid phase, but with a
remarkable structural feature —a small plateau (i.e., a
membrane region with a horizontal tangent) occurs
around the junction. This plateau is also given by an
analytical linear calculation [22].

When line tension dominates [Fig. 3(b)], the radius at
the interface decreases with increasing line tension. It
vanishes for a huge line tension. Note that our description
breaks down at scales comparable to the bilayer width.
Despite the fact that the radius goes to zero, the mean
curvature remains finite; in the highly pinched limit, a
saddle point develops at the neck which keeps the total
curvature energy finite.

When the discontinuity in Gaussian rigidities domi-
nates [Fig. 3(c)], numerical evidence suggests that the
neck radius does not decrease all the way down to zero.
Moreover, stability arguments given below impose a
bound on the maximum absolute value of ��G. How-
ever, the presence of the neck favors the breaking process.
In this case, fission does not occur exactly at the interface
but at the neck. One thus expects to find, after fission, a
small patch of one phase still attached to the other phase.
Since details at the length scale of the neck itself cannot
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FIG. 3 (color online). Numerical shapes of the junction for v
dimensionless units. The length scale is the radius of phase � (R
that �� � 1. (a) Shapes for various ratios of bending rigidities. Th
equal (��G � 0). The values of �
=�� are 1.25, 1.5, 1.75, and 2.0
equal: ��G � 0 and �� � �
. The values of the line tension are
Gaussian rigidity. The line tension vanishes (� � 0) and the bending
Gaussian rigidity are ��G � �
G � ��G � �1:0, 1.0, 2.0, and 4.0.
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be resolved experimentally, this effect might be relevant
to determine the dominant fission mechanism.

Discussion.—For general experimental conditions, all
three effects are superimposed at the junction. A quanti-
tative analysis of the shape in order to extract the vari-
ous parameters is then difficult, especially as little to
nothing is experimentally known about the precise
shape of the junction. Typical values of the bending
rigidity of liquid bilayers are around 25kBT, and the
rigidity of the liquid-ordered phases can be up to sev-
eral times higher. Recently, the bending modulus of a
heterogeneous vesicle has been obtained by comparing
the experimental shape to numerical solutions of the
shape equations [23]. The Gaussian rigidity ��i�

G is noto-
riously difficult to measure experimentally, but a recent
study cites values of ��i�G � �0:83�i [24]. Stability argu-
ments impose that �2�i < ��i�

G < 0.
The equilibrium free energy of the tube can be calcu-

lated from Eq. (1) and allows for a discussion of the
stability of the tube and of its fission. We show in Fig. 4
the free energy of a tube as a function of the dimension-
less radius at the neck rneck=R0 in the specific case of
�� � �
 and ��G � �
G. This energy is maximal for a
vanishing radius: at this point, the membrane is maxi-
mally bent. Fission of the tube by pinching requires one to
cross this energy barrier. The free energy of the ruptured
tube is also shown on the figure. It is lower than the top of
the barrier by the contribution of the Gaussian curvature
due to the change in topology upon rupture, which equals
4��G. Notice that the bending energy does not change
upon rupture: at vanishing radii, the neck is a saddle
point with vanishing mean curvature [22]. The ruptured
tube corresponds to a transient shape since, in the absence
of an applied force, the tubes retract to form two spheres.
In the absence of line tension the tube is uniform r�z� �
R0 and its energy is zero, and a homogenous tube is thus
thermodynamically stable only if the free energy of the
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arious line tensions and differences of elastic rigidities in
� � 1); the energy scale is the bending rigidity of phase � so
e line tension vanishes (� � 0) and the Gaussian rigidities are
. (b) Shapes for various line tensions. The elastic rigidities are
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FIG. 4. Schematic energetics of fission. The solid curve plots
the free energy of a tube pinched by line tension as a function of
the dimensionless neck radius. Every equilibrium radius r? has
a corresponding energy E�r?� � Ebend � E� which defines in
turn an energy barrier for fission Egap and a free energy gain
upon fission �F . For clarity, this figure assumes identical
elastic rigidities on both sides.
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ruptured tube is positive. Numerically, we have deter-
mined this stability limit as �G >�1:29�.

The values of the parameters then fix the value of
rneck=R0. We have also evaluated the energy barrier
against fission by pinching from this macroscopic model.
Note, however, that this is only a lower bound to the real
energy barrier, as it ignores effects at the molecular
length scale which certainly is attained when the neck
becomes very thin. To compare our results to the experi-
ments, we have computed the various energies at the fol-
lowing (measured or realistic) parameter values. With
bending rigidities �� � 40kBT � 1:6� 10�19 J and
�
 � 70kBT � 2:9� 10�19 J, Gaussian rigidities ��G �

�33:2kBT � �1:38� 10�19 J and �
G � �58kBT �
�2:3� 10�19 J, surface tensions 1� 10�6 N=m in phase
� and 5:7� 10�7 N=m in phase 
, and a line tension 7�
10�12 N, we have determined the height of the energy
barrier to be Egap � 7:8kBT. If we assume that fission is a
thermally activated process [25], the average time until
fission tb occurs is tb � t0 expEgap=kBT. Using a hydro-
dynamic argument, we estimate the basic time scale as
t0 � �R3

�=��, where � is the viscosity of water. For the
parameter values cited above, this yields a time scale t0 �
1:44� 10�4 s. We thus expect the experimental time until
fission to be approximately 350 ms. This is in good
agreement with the experimentally observed typical
time for fission, which is of order 1 s.

Conclusion.— We have studied the behavior of a multi-
phase membrane tube using thermodynamic arguments.
The shape of the junction between two domains depends
on three quantities: the line tension of the interface and
the jumps in the two elastic constants. While experimen-
tal precision is not yet at a level where these results can be
compared directly to our calculated tube shapes, we have
158104-4
also considered the breaking time of a two-phase tube.
Our modeling, based on an energetic approach, predicts a
strong dependence of the fission dynamics on the elastic
properties of the phases and yields results that are in good
agreement with the experimental data.
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[19] F. Jülicher and R. Lipowsky, Phys. Rev. E 53, 2670

(1996).
[20] J. M. Allain and M. Ben Amar, Physica (Amsterdam)

337A, 531 (2004).
[21] O.-Y. Zhong-can and W. Helfrich, Phys. Rev. A 39, 5280

(1989).
[22] J. M. Allain et al. (to be published).
[23] T. Baumgart, S. T. Hess, and W.W. Webb, Nature

(London) 425, 821 (2003).
[24] D. P. Siegel and M. M. Kozlov, Biophys. J. 87, 366 (2004).
[25] Y. Pomeau, C.R. Acad. Sci., Ser. 2 Mec. Phys. 314, 553

(1992).
158104-4


