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Equation of State of a Dense Columnar Liquid Crystal
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An accurate description of a columnar liquid crystal of hard disks at high packing fractions is
presented using an improved free-volume theory. It is shown that the orientational entropy of the disks
in the (one-dimensional) fluid direction leads to a different high-density scaling pressure compared to
the prediction from traditional cell theory. Excellent quantitative agreement is found with recent Monte
Carlo simulation results for various thermodynamic and structural properties.
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The lyotropic columnar liquid crystal, characterized
by a two-dimensional hexagonal stacking of columns
each with a liquidlike internal structure, has received
considerable attention in recent years both in experi-
mental colloid science [1,2] and computer simulations
[3,4]. The recently developed colloidal systems of
polymer-grafted gibbsite platelets are known to show a
first order phase transition from a spatially homogene-
ous nematic to an inhomogeneous columnar phase upon
densification [2]. The columnar signature of the latter is
evidenced by its bright Bragg reflections for visible light,
and it has been confirmed on a more rigorous basis using
small-angle x-ray scattering (SAXS) measurements [2].
Colloidal platelets constitute an emerging field of inter-
est and future efforts can be put into reducing their poly-
dispersity and manipulating columnar textures by means
of a magnetic field, both aimed at making high-quality
single-domain columnar structures. These may be candi-
dates for the production of, e.g., colloidal photonic crys-
tals [5].

In this Letter we consider a simple but accurate theo-
retical description inspired by cell theory, which was first
applied to spatially ordered liquid crystals by Taylor,
Hentschke, and Herzfeld [6,7]. By incorporating the rota-
tional freedom of the disks into the framework we are
able to quantitatively account for both thermodynamic
and structural properties of the phase along its entire
stability range. The theory is shown to be universal, i.e.,
independent of the generic shape or the length-to-
diameter ratio of the disks. For this reason, the results
are expected to be significant for ongoing experimental
studies on colloidal platelet systems. In particular, knowl-
edge of the osmotic pressure may be useful for analyzing
sedimentation experiments [8], whereas structural pre-
dictions may prove helpful for the interpretation of
SAXS results on dense systems of platelets [9].

To describe the properties in the two positionally or-
dered dimensions of the columnar liquid crystal we as-
sume the particles to be confined within discrete
compartments represented by hexagonal tubular cells
which form a close-packed structure according to the
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classical free-volume (‘‘cell’’) theory [10,11]. The disks
are allowed to take any position within the cell but they
may not share the cell with another particle or penetrate
an adjacent one. The cell approach will be combined with
an appropriate description of the one-dimensional fluid
behavior along the column direction. We start from the
traditional Tonks model [12] applied to a linear fluid of N
hard disks with diameterD and thicknessLwhose centers
of mass can move freely on a line with length ‘. Since the
disks are allowed to rotate freely around their centers of
mass, the effective excluded thickness ~Li;j between two
adjacent disks i and j is an orientation-dependent quan-
tity, i.e. ~Li;j��i;�j�> L, in terms of the solid angle �.
We assign xk to the position of particle k on the line and
fix the first and last particles at x1 � 0 and xN � ‘,
respectively. The configurational integral for this system
in the macroscopic limit L=‘! 0 is then formally writ-
ten as

QN �
1

V NN!
Qor
N h�‘� ~Ltot��1; . . . ;�N��

Nif���; (1)

with V the thermal volume pertaining to the transla-
tional and orientational kinetic degrees of freedom. The
brackets denote an orientational average according to
some unknown orientation distribution function (ODF)
f��� which is normalized according to

R
f���d� 
 1.

Note that QN is proportional to an N-dimensional free
volume with ~Ltot being the total occupied length for a
given orientational configuration, expressed in terms of
the following sum:

~L tot��1; . . . ;�N� �
XN
k�1

~Lk;k�1��k;�k�1�: (2)

Equation (1) is difficult to analyze rigorously so we shall
approximate it as follows:

QN ’
‘N

V NN!
Qor
N

�
1�

1

‘
h ~Ltot��1; . . . ;�N�if���

�
N
;

which is assumed to be justified for the strongly aligned
orientational configurations we expect in a dense colum-
2004 The American Physical Society 157801-1



VOLUME 93, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S week ending
8 OCTOBER 2004
nar state. Further simplification in this respect can be
achieved by neglecting the dependency of the excluded
length on the azimuthal angle ’ of the particles. To this
end we shall consider an effective disk thickness, which is
determined solely by the polar deflection angle � between
the particles’ symmetry axis and the line unit vector. For
small angles this quantity is given by

~L eff � L
�
1�

1

2

D
L
j�j �O��2�

�
; (3)

up to leading order in �. The factor ‘‘1=2’’ in Eq. (3) is
included explicitly to approximately restore the azimu-
thal dependency of ~Leff . Setting the factor equal to unity
yields the maximum ~Leff at fixed polar angles, which is
realized only if 
’ for two adjacent disks is exactly �. In
reality, 
’ is randomly distributed between 0 and 2� so
that the total excluded length is usually way below its
maximum value. The orientationally averaged total occu-
pied length is approximated by the following mean-field
expression:

h ~Ltotif��� ’ Nh ~Leffif���; (4)

where the ODF obeys common uniaxial symmetry and
depends only on the polar angle �. The configurational
integral then simply becomes

QN �
‘N

V NN!
Qor
N

�
1� �

�
1�

D
2L

hj�jif���

��
N
; (5)

in terms of the linear density � � NL=‘. Following
Onsager [13] the orientational configurational integral
Qor
N reads

Qor
N � exp��Nhln�4�f����if����; (6)

and the total Helmholtz free energy �Ffluid � � lnQN of
the modified Tonks fluid is given by a superposition of the
ideal, orientational, and configurational entropic contri-
butions:

�Ffluid

N
� ln��V � �

Z
f��� ln�4�f����d�

� ln
�
1� �

�
1�

D
2L

Z
f���j�jd�

�	
; (7)

with � � 1=kBT. The thermodynamic equilibrium ODF
can be obtained by a functional minimization of the free
energy with respect to the orientational distribution under
the normalization restriction. After some algebra we ar-
rive at the following closed expression for the normalized
ODF:

f��� �
�2

4�
exp���j�j�; (8)

where � depends on the density and the disk aspect ratio
D=L via
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� �
3

2

D
L

�
�

1� �

�
: (9)

Since �� 1 for sufficiently anisometric disks (D=L�
1) the ODF is sharply peaked around � � 0, as we expect.
The divergence of � at close packing (� � 1) indicates
that the disks are forced to orient parallel to the director
in this limit. Inserting Eq. (8) and straightforward inte-
gration yields an explicit free energy in terms of �.
Taking the standard derivative with respect to the linear
density then gives the (dimensionless) pressure �PL of
the one-dimensional fluid:

�PL � 3�=�1� ��; (10)

which is exactly 3 times the original Tonks pressure [12].
This result implies that the orientational confinement of
the disks inside the columns gives rise to an additional
entropic contribution 2�=�1� �� to the total pressure.
Note that the derivation of Eq. (10) closely resembles
the origin of the quasi-ideal pressure of the nematic state
�P� 3N=V within the Gaussian scaling ansatz for the
ODF [14,15], although both have a different physical
basis.

The description of the columnar phase in the two
positionally ordered dimensions is analogous to that of
a 2D (hexagonally) ordered configuration of N disks.
According to the noncorrelated version of the cell model
the configurational integral of the N-particle system can
be approximated by [16]

Qcell
N �

Z
drN exp���U�rN��

’

�Z
dr exp

�
�
�
2
unncell�r�

��
N
;

where unncell�r� is the potential energy between the particle
and its nearest neighbors. For hard interactions the second
phase space integral is simply the (2D) free volume of the
particle in the cell. Assuming that the nearest neighbors
constitute a perfect hexagonal cage, this free volume is
given by Vfree �





3

p
�
c �D�

2=2 with 
c the nearest
neighbor distance. The configurational integral then be-
comes (ignoring all irrelevant contributions)

Qcell
N ’ �Vfree�N / �1� �
�1

c �2N; (11)

in terms of the dimensionless spacing �
c � 
c=D.
Applying the condition of single occupancy (i.e., one
array of disks per column) we can use �
c to relate the
linear density � to the three-dimensional volume fraction
via

� � �� �
2
c; (12)

with �� � �=�cp the volume fraction normalized to its
close-packing value �cp � �=2





3

p
.

The total excess Helmholtz free energy of the colum-
nar state is obtained by adding the cell contribution to the
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FIG. 1. (a) Equations of state for the columnar phase. The
solid curve is the prediction from the present cell model; the
dashed one is the traditional cell pressure given by
Eq. (16). The symbols correspond to the simulation data from
Zhang et al. [4] for D=L � 10 (crosses) and D=L � 20 (tri-
angles). The inset shows the pressure in the dilute regime
near the columnar-nematic (‘‘melting’’) transition at �� �
0:48. (b) Dimensionless chemical potential � ~! � �!�

ln�v0=V�cp� from simulations (dotted curves) and cell theory
(solid curves). The prediction from the traditional cell model,
indicated by the dashed curve, is independent of D=L.
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Tonks excess free energy. Omitting all constant terms we
arrive at

�Fex
tot

N
��2 ln

�
�

1� �

�
� ln�1� �� � 2 ln�1� �
�1

c �;

(13)

representing the orientational, ‘‘Tonks,’’ and cell contri-
butions, respectively. Inserting Eq. (12) and minimizing
the free energy [17] with respect to the cell spacing �
c
yields a third-order consistency equation with compli-
cated solutions. Expanding the physical solution near
close packing in terms of 1��� up to leading order
yields

�
 c � 1� 1
5�1��

�� �O��1����2�: (14)

Substituting its closed form into the free energy Eq. (13)
and taking the appropriate derivative gives a similar
expansion for the total dimensionless pressure ~P �

�Pv0=�cp (with v0 the disk volume),

~P �
5

1���
� 6:4� 1:128�1���� �O��1����2�;

(15)

indicating that the high-density scaling pressure, i.e., the
leading order contribution, is essentially different from
the classical cell prediction 3=�1���� for hard spheres
[18,19]. The latter result is completely analogous to our
result for perfectly aligned disks and can be reproduced
directly from Eq. (13) by omitting the orientational con-
tribution given by the first term. The ‘‘traditional’’ cell
pressure is given by

~P 

��

1� ����1=3
�

3

1���
� 4�O�1����: (16)

In Fig. 1(a) we have plotted the above mentioned cell
equations of state, i.e., Eq. (16) and the closed form
analog of Eq. (15), along with the ones obtained from
Monte Carlo simulations on cut spheres by Zhang et al.
[4]. The quantitative agreement between the present cell
description and the simulations significantly improves
upon densification. Above �� � 0:8 our prediction is
found to match the simulations within 1%. Obviously,
the discrepancy is much larger in the dilute regime (�� <
0:6) where the cell model, at least the simplest version
considered here, is no longer quantitatively reliable.

The chemical potentials are depicted in Fig. 1(b).
These are readily obtained from the absolute free energy
and pressure of the cell model via the Legendre transform
! � �F� PV�=N and by means of a Gibbs-Duhem in-
tegration of the pressure fits obtained from the simulation
data [4]. Again, close agreement is found between both.
The values at melting are found to differ only by 
~! �
0:3kBT and 0:6kBT for D=L � 20 andD=L � 10, respec-
tively, indicating that the cell prediction is surprisingly
efficacious throughout the �� range. The ‘‘splitting’’ of
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the curves for both aspect ratios is simply due to the
orientational entropy [second term in Eq. (7)], �For=N �
2 ln�� 2, which depends explicitly on D=L via Eq. (9)
and therefore gives rise to a different intercept at the
melting volume fraction.

Let us now focus on the spacings between the columns
�
c and the average disk spacing inside the columns �
n 


n=L � ��1, which follows directly from Eqs. (12) and
(14):

�
 n �

�
��

�
1�

2

5
�1����

�	
�1

�O��1����2�: (17)

Comparing with Eq. (14) we see that the intracolumnar
distance �
n between the disks grows faster than the
intercolumnar one �
c. The expansion of the columnar
structure is therefore anisotropic. This behavior is quite
different from the classical model for which �
c 
 �
n �
���1=3 indicating an isotropic expansion upon lowering
��. In Fig. 2 the predicted spacings, given by the closed
157801-3



FIG. 2. Normalized intercolumnar and intracolumnar spac-
ings, 
c=D and 
n=L, respectively, as a function of ��. Solid
lines are theoretical predictions; the symbols follow from
simulations for D=L � 10 (crosses) and D=L � 20 (triangles).
The dotted curve follows from the traditional cell model and
denotes both spacings. Inset: Average polar angle relative to the
internal angle (�int � L=D) plotted versus ��.
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form analogs of Eqs. (14) and (17), are compared with
simulation results. Unlike the pressure, the prediction for
the columnar spacings remains surprisingly accurate even
in the regime close to the columnar-nematic transition.
Quantitatively, theory and simulation are found to agree
within 1% over the entire columnar stability range.

To assess the degree of orientational order in the dense
columnar state we consider the ratio of the average po-
lar angle hj�ji to the internal angle �int � L=D, i.e.,
hj�ji=�int � 2D=L�. Substituting Eqs. (9) and (17) re-
veals a simple proportionality with respect to the intra-
columnar spacing, i.e., hj�ji=�int ’ �4=3�� �
n � 1�. This
tells us that the disks are only marginally perturbed
away from their parallel orientations since the average
‘‘off-parallel’’ deflection angle does not exceed the inter-
nal angle of the disk. The full result, included in Fig. 2,
explicitly shows that this situation remains up to the
columnar-nematic transition, located around �� � 0:48.
From this we conclude that the orientational freedom of
the disks is extremely small throughout the entire colum-
nar stability regime. Moreover, the dominance of near-
parallel configurations gives an a posteriori justification
for the mean-field asymptotic analysis presented here.

In conclusion, we have constructed a modified cell
theory for the columnar state by explicitly accounting
for the rotational freedom of the disks. Our approach
constitutes a significant quantitative improvement over
the traditional one which, contrary to the case of a hard-
sphere fcc crystal [19], appears to be inappropriate for a
columnar liquid crystal even in the regime near close
packing. The theory does not only quantitatively pre-
dict the thermodynamics of the columnar state, as evi-
denced by the pressure and chemical potential, but also
157801-4
structural features in terms of the characteristic columnar
spacings.

Future work could be aimed at applying the present
approach to a dense smectic-A phase of hard spherocyl-
inders by considering a two-dimensional fluid of rotating
rods [6]. Although the theory is expected to be less
successful here, it would be intriguing to verify its quan-
titative merits for a lyotropic smectic phase. Furthermore,
the cell description could be refined in the regime close to
the melting transition by introducing more advanced cell
theories which include, e.g., cooperative motion of the
columns [20]. The fact that the simulation pressures in
Fig. 1(a) remain insensitive to the aspect ratio throughout
the entire columnar stability range is surprising and sup-
ports the notion that the columnar phase is dominated by
cell-behavior up to the melting transition, albeit in a more
sophisticated fashion than we described here.
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