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We study the photoemission spectrum of the double-exchange (DE) interaction systems. The DE
Hamiltonian can be transformed into a simple form consisting of fermions and Schwinger bosons. We
apply the gauge-field model and calculate the Green’s function of the gauge field, fermions, and bosons.
The imaginary part of the Green’s function of an electron has an asymmetrical peak with strong
temperature dependence. This can explain why the shape of the angle-resolved photoemission spectra
of manganites near the Fermi surface is very different from that of Fermi liquid. We also show why the
position of the Fermi surface is not sensitive to temperature.
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The fundamental mechanism in perovskite manganites
(La1�xAxMnO3, where A is the divalent element and x is
the doping concentration) is the double-exchange (DE)
interaction. It [1–3] is responsible for the intimate corre-
lation between transport and magnetism. More recent
studies [4] revealed a complex phase diagram and very
rich physics. Though most physical phenomena are yet to
be explained quantitatively, it seems that the properties of
the manganites near optimum doping at low temperature
where DE is clearly the dominant mechanism is well
understood. Intuitively, one can conceive the following
picture. The system is in the ferromagnetic state with
spins coupled to each other via conduction electrons.
The conduction electrons with spins aligned form
Fermi liquid. However, recent angle-resolved photoemis-
sion spectrum (ARPES) experiments on several mangan-
ite system experiments [5–7] showed some very
interesting results that cannot be explained by the above
simple picture. Among them, two stood out. The first one
is the spectrum near the Fermi surface. It has a strong
temperature dependence and a shape completely different
from that of a Fermi liquid, e.g., gold. The second im-
portant discovery is the position of the Fermi surface. At
very low temperature all the spins of the conduction
electrons are aligned. Hence, there is only one big
Fermi sphere. Near TC, there should be two smaller
Fermi spheres. However, the experiment by Saitoh and
co-workers [7] showed only a 4% shift in the position of
the Fermi surface, instead of the 30% [8] expected by
conventional Fermi liquid theory.

The goal of this Letter is to study DE in detail. The
ARPES results set an important criterion of validity for
our approach. Orbital ordering, Yahn-Teller effect, polar-
onic effect, and inhomogeneities such as mesoscopic
textures [9], though very interesting, make analysis diffi-
cult. We intentionally focus our attention on the region
where DE is the dominant factor, namely, near optimum
doping and away from TC.

In the past ten years, there has been significant progress
in the study of DE, notably the applying the Schwinger
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boson model [10–15]. However, most works have used
Holstein-Primakoff (HP) transformation in later calcu-
lations. This approximation is good only for large spins
and low temperature. Another approach (1=S expansion),
proposed by Shannon [13], is promising. Here, we try to
attack the problem from still another direction and hope-
fully develop a method applicable to a wide range of
conditions. The major difficulty of the calculation involv-
ing the Schwinger bosons is the constraints. From the
study of high TC materials, we find that the gauge-field
model [16,17] is suitable for treating fields with con-
straints. Additionally, ARPES has been widely used to
study the existence or the properties of quasiparticles in
strongly correlated systems [18]. The analysis on man-
ganites will be helpful to the study of other many-body
systems. Finally, according to our study and experimental
data [7], the 3D system is very different from the 2D
system. So our results probably cannot be compared with
those experimental data [7] or calculations [19] for 2D
systems.

We started with the double-exchange Hamiltonian:

H � �t
X
k;


cyi
cj
 � J
X
i

Si � 
i:� (1)

The first term describes the hopping of the holes between
Mn�3 and Mn�4 sites. The second term, where Si denotes
the manganite ion spins and 
i the hole spins, is the
Hund’s coupling. The level spacing J, of the order of eV,
is the largest energy in the system and hence cannot be
treated perturbatively. For this reason, Kubo and Ohata
[8] used projection operators to apply a constraint to
holes. Hoppings can occur only at those sites where the
local spins are antiparallel to those of the holes. Thus, the
Hund’s coupling can be removed from the Hamiltonian
because all of the states have the same coupling energy.
Further progress is made by applying the slave-fermion
method to holes to separate the spins from the charges:
ci#�"	 � fi�i#�"	, where fi is the fermion operator and
�i"�#	 the spin-up (spin-down) spinon operator. Then,
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Schwinger bosons are introduced to represent the total
spins: by" jS� 1=2; m� 1=2i �

�����������������������������������
�2S� 1	�S�m	

p
jS;mi

and by# jS� 1=2; m� 1=2i �
�����������������������������������
�2S� 1	�S�m	

p
jS;mi.

The Hamiltonian now becomes

H � �
t

2S� 1

X
i;j

fyi �b
y
j"bi" � byj#bi#	fj; (2)

with the constraint on each site for slave fermions and
Schwinger bosons:

byi"bi" � byi#bi# � fyi fi � 2S: (3)

Now the gauge-field model was introduced to decouple
the fermions and bosons [19]. The constraints can be
taken into account with the Lagrange undetermined mul-
tipliers, which, in turn, can be absorbed into the temporal
part of the gauge field. If the phase fluctuation of the
gauge field is considered, then the Lagrangian has the
following form in the continuum limit [20]:
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where �h had been set to unity,�f and �b are the chemical
potentials of fermions and bosons, respectively, and the
effective masses of fermions and bosons were determined
by the mean-field approximation of Eq. (2): mf � �2S�

1	=2Sa2t and m" � m# � mb � �2S� 1	=a2xt, with a
being the lattice constant and x the hole concentration.
The mass of bosons is an order magnitude greater than
that of fermions. In order to understand the system, one
would like to calculate the Green’s function of electrons,
or, in our case, the holes. It is a convolution of the Green’s
functions of fermions and spinons. For the relations be-
tween the spinons and Schwinger bosons, we found that in
the restricted vector space jS;mi and jS� 1=2; m0i, where
S � 2, the spinons have functions: �#jS� 1=2; m�

1=2i �
�����������������
�S�m	

p
jS;mi and �"jS� 1=2; m� 1=2i ������������������

�S�m	
p

jS;mi, which are the same as those of
Schwinger bosons. Hence, the Green function of holes
can written as a convolution of that of fermions and
Schwinger bosons:

Gh
# �i!n;k	 �

1

�

X
m;q
Gf�i!n� i!m;k�q	G"�i!m;q	; (5)

where Gf�i!n;k	 and G"�i!m;q	 are the fermion and
spin-up Schwinger boson Green functions. Both of them
are related to the Green function of the gauge field,
�h ~Tai;q��	a

y
j;qi [17].
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f�i!n;q	 �
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#�i!n;q	

�
ij
;

(6)
where the superscript of the current-current correlation
function 
��i!n;q	 �� � f; "; #	 denotes the fermions and
the spin-up and spin-down Schwinger bosons, and the
subscripts i and j denote the spatial components.

Since 
��i!n;q	’s are related to all the important
physics, a little elaboration is in order. The temporal
component h ~Ta0;q��	a

y
0;qi is a density-density correlation

function. Its effect is limited by screening and hence can
be neglected. For the spatial components, we have


�
ij�i!n;q	 �

n�
m�

 ij �
1

N

X
p

�2p� q	i�2p� q	j
4m2

�

�
n��p	 � n��p� g	
i!n � "�;p�q � "�;p

; (7)
where "�;p � p2=2m� is the energy of the fermions, spin-
up and spin-down Schwinger bosons, n�, and n��p	 are
the average number per site and distribution functions,
respectively. As i!n � 0 and q ! 0, the two terms on the
right-hand side (rhs) of Eq. (7) cancel each other for both
the longitudinal part and the transverse part of

f

ij�i!n;q	. The situation of bosons is different if there
is long-range order. There is cancellation for the longitu-
dinal part but not for the transverse part. To illustrate this
point, consider the ferromagnetic phase at T � 0 K with
all the ion spins pointing upward. There is ‘‘condensa-
tion’’ [21,22] at zero-momentum state: n"�0	 � 0 due to
the abundance of spin-up bosons, hby";ib";ii � 2S� x. The
second term on the rhs of Eq. (7) contributes a term
n"�0	 ij=mb to the longitudinal 
"

ij�i!n;q	 but nothing
to the transverse one. This important difference results in
the cancellation in the denominator of the longitudinal
part of Eq. (6). Therefore, we can neglect the transverse
part. From now on, we concerned ourselves only with the
longitudinal part of the current-current correlation func-
tion, which is to be denoted as 
��!;q	.

It is helpful to understand the physics by studying the
expressions of the imaginary part of 
��!;q	:

Im
f�!� i ;q	 � �
a3�mf!=q	

2

8%mfq

X

��


&�k2F � k2f
	

� �k2F � k2f
	; (8a)
and
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Im
"�#	�!� i ;q	 �
%q2n"�#	�0	

4m2
b

� �!� "b�q		

� �!� "b�q		� �
a3�mb!=q	

2

8%mbq)
2
T

� ln
1� exp���k2b�=2mb	

1� exp���k2b�=2mb	
; (8b)

where &�x	 is the step function, kf�b	� � mf�b	!=q� q=2,
and )T � 1=

�����������������
2mbkBT

p
is the thermal wavelength.

Clearly, the fermion part comes from particle-hole exci-
tation and the boson part from scattering. The character-
istic Bose-Einstein distribution function is manifest in
Eq. (8b). The first term is the contribution from the
‘‘condensate.’’ The divergence of the second term is
also due to nb�p	. It would have been smoothed out if
higher order terms were considered. Nevertheless, the
divergence has little effect on our result because it ap-
pears in the denominator of Ga�!;q	. Other than diver-
gence, the ratio of Im
"�#	�!;q	 to Im
f�!;q	 is
approximately 1=�kF)T	2, which is small in the tempera-
ture range we are interested in. As a result, the fermion
part is much more important in the following calculation.
However, one must remember that it is bosons which
make the transverse component of 
�!;q	 negligible.

We analyzed the correlation functions and found that
Re
f�b	�!;q	 is of the order x=mf ’ 2S=mb for finite q,
and Im
f�!;q	 � �x=mf	�mf!=q	2=kFq for finite q and
!. For q � kf and ! � +kFq=mf,

I m
f�!;q	 � x+3=mf: (9)

Now we are in a position to calculate the self-energies
of fermions and bosons (and then the Green function of
holes). They were denoted by �f�i!n;q	 and �b�i!n;q	,
respectively. Take the former as an example,

�f�i!n;q	 � �
1

N�

X
m;p

�2pk � q	2

4m2
f

Gf
0�i!n � i!m;p

�q	Ga�i!m;p	; (10)

where pk is the component parallel to q and Gf
0�i!n;p	 is

the zeroth order Green function of fermions. Since the
real part of the self-energy only shifts the particle energy,
we concentrated on the imaginary part. The imaginary
part of the Green function, Gf

0�z;p	, is a Dirac delta
function; the frequency sum can be done easily:

Im�f�b	�!� i ;q	 �
X
p

�2pk � q	2

4m2
f

�nb�"f�b	;p�q �!	

� nf�b	�"f�b	;p�q	�ImG
a�"f�b	;p�q

�!� i ;p	;

(11)

where � ( � ) is for fermions (bosons). We can make a
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quite accurate estimation of Im�f�!;q	 near the Fermi
surface; i.e., q � kF and j!j � kBT. It should be noted
that the factor �nb�"f;p�q �!	 � nf�"f;p�q	� in Eq. (10)
imposes a severe restriction on the summation of p.
nb�"f;p�q �!	 is negative for nearly all the negative
"f;p�q. Thus the factor gives vanishingly small values
unless j"f;p�qj & !; kBT. (The similar can also be said
of bosons.) The restriction greatly reduced the magni-
tudes of Im�f�!;q	. Physically, it means that for low-
lying excitations, only those fermions near the Fermi
surface and those bosons in low-lying states make sig-
nificant contributions to self-energy. Effectively, the do-
main of p is centered around kF because of the restriction
j"f;p�qj & !; kBT. Because of the properties of
Im
f�!;q	 in (9), we found that the main contribution
in Eq. (10) came from the small p region. Thus, near the
Fermi surface, Im�f�!;q	 / !2="F, the same as the
conventional Fermi liquid. For the bosons, with the help
of relations (8)–(11), we found that Im�"�#	�!;q	 �
mf

mb
Im�f�!;q	 [23].
The photoemission spectrum is proportional to

jMj2ImGe
R��;k	. Here M is the coupling matrix of pho-

tons and electrons. We did not account for the matrix
since it required electron wave functions from band cal-
culation. However, we can study the form of the imagi-
nary part of Green’s function where the main feature of
the spectrum is contained. Having performed the fre-
quency summation in Eq. (5) and treated ImG"�z;q	 as a
Dirac delta function due to the smallness of Im�"�!;q	,
we obtain

ImGh
#R��;k	 � %nb�0	ImG

f
R��;k	 � %

X
q
�nb�"b;q	

�nf�"b;q ��	�ImGf
R�"b;q

��;q� k	; (12)

where � is the energy of holes measured from the Fermi
surface and the first term on the rhs is the contribution
from the condensate. At present, we do not have an
applicable theory to calculate nb�0	 because our
Schwinger bosons are interacting strongly with the gauge
field. However, this difficulty was circumvented in the
following way. We noticed the total weight of ImGh

# ��;k	
has to be equal to %. Hence, we determine nb�0	 by
requiring this condition be fulfilled.

Since we are interested in the spectrum near the Fermi
surface, we set jkj � kF and calculated ImGh

#R��;k	. The
results are shown in Fig. 1 with t � 0:2 eV for doping
concentration x � 0:2 and x � 0:3, with the former being
shifted toward the left by 1 eV. The dotted lines are those
at 20 K and the solid lines at 80 K. The peaks come
mainly from the first term of Eq. (12) and the broad tails
from the second. As expected, the ones at 20 K have
sharper peaks. A more interesting feature is the asym-
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FIG. 1. ImGh
#R��;k	 versus � at doping concentration x �

0:2 and x � 0:3. The dotted lines are those at 20 K and the solid
lines at 80 K. Those of x � 0:2 were shifted 1 eV to the left for
readability.
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metry. The peaks have very broad tails for �< 0. (Since
our approach has particle-hole symmetry, the properties
of �< 0 holes can be applied to �> 0 electrons.) The
asymmetry of ImGh

# ��;k	 can be deduced in the follow-
ing way. For �< 0, the factor �nb�"b;q	 � nf�"b;q ��	�

requires j"b;qj & kBT or q &
�����������������
2mbkBT

p
. The restriction

reduced the magnitude of ImGh��;q	. On the other hand,
there is no such restriction on q when �> 0, and
ImGh

#R��;k	 decreases as "f=�
2 for large �. For the

conventional Fermi liquid, the spectrum has a jump at
the Fermi surface even at room temperature. Here, as the
photon energy increases, the intensity of photoemission
increases smoothly due to the broad tail and saturates at
the Fermi surface. It is also sensitive to temperature
variation because the weight of the first term in
Eq. (12) decreases with increasing temperature.

A very interesting difference between our results and
those using HP transformation [9,10] should be noted.
While the broadening of Fermi edge given by HP trans-
formation is of the order of the spin wave energy, ours is
much larger. It comes from the interaction with the gauge
field, which, in turn, comes from the interaction between
fermions and bosons. However, at very low temperature,
the first term of Eq. (12), or the condensation term,
dominates. The broadening reduces to the order of kBT
and agrees with the result of HP transformation. The
difference strengthened our point of view that the
gauge-field model is better than the HP transformation
for manganites because the latter cannot give such broad-
ening shown in ARPES. However, the relation between
the mean-field approximation and the gauge-field model
of Schwinger bosons is a topic worth studying.

Our calculation can also explain the result that the
position of Fermi surface is insensitive to temperature.
One can see easily that there is really only one Fermi
157205-4
sphere and that it is that of the slave fermion imbedded in
a host of spins. In fact, this is a strong experimental
evidence of spin-charge separation. Finally, we are able
to provide a clear picture of DE systems. The spins of
holes are coupled strongly to the ion spins and separated
from their charges. Hence, they are not good quantum
numbers. The unusual shape of the spectrum at the Fermi
surface is due to the strong interaction between fermions
and spins. This results in a temperature-sensitive Fermi
edge and excitations no longer restricted to the Fermi
surface.
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