Electronic Structures of RTe_2 **(** $R = La$ **,** Ce **): A Clue to the Pressure-Induced Superconductivity** \mathbf{in} **CeTe₁** \mathbf{so}

J. H. Shim, $¹$ J.-S. Kang, $²$ and B. I. Min¹</sup></sup>

¹Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea² Department of Physics, The Catholic University of Korea, Puchon 420, 743, Korea *Department of Physics, The Catholic University of Korea, Puchon 420-743, Korea*

(Received 28 April 2004; published 7 October 2004)

Electronic structures of *R*Te₂ ($R = La$, Ce) have been investigated by using the local spin density approximation (LSDA) and the LSDA + U (*U*: on-site Coulomb interaction) band methods. Both LaTe₂ and CeTe₂ show the very similar Fermi surface nesting features along the $[100]$ direction, which drive the charge-density wave (CDW) instability in the Te(1) sheets. The contribution near E_F from Ce 4*f* states is negligible in agreement with the measured ARPES spectra. In the semimetallic CDW-distorted *R*Te₂, both Te vacancy and pressure induce the charge transfer from Te(1) 5*p* to *R* 5*d* states, producing the enhanced density of states at E_F . We suggest that these increased self-doped Te(1) 5*p* hole carriers are responsible for the pressure-induced superconductivity in nonstoichiometric $CeTe₁₈₂$.

DOI: 10.1103/PhysRevLett.93.156406 PACS numbers: 71.20.Lp, 71.18.+y, 74.70.Ad

One of the most interesting physical properties of $CeTe₂$ is the recent observation of the pressure-induced superconductivity [1] in CeTe_{2- δ} (δ = 0.18) with T_C = 2.7 K, while stoichiometric CeTe₂ has an antiferromagnetic (AFM) ground state. CeTe₂ crystallizes in the layered $Cu₂Sb$ -type tetragonal structure with two types of Te sites: Te(1) and Te(2). Te(1) atoms form the Te square sheet that is sandwiched by the corrugated double layers of Ce-Te(2) slabs. The isostructural LaTe₂ is reported to have the charge-density wave (CDW) instability along [100] direction in the *ab* plane that arises from the nesting between the electron and hole Fermi surfaces in the Te(1) square sheet [2,3]. CeTe₂ also reveals the pseudogap feature [4] and the superstructure [5], which are believed to be related to the CDW. Interestingly, the superconducting phase in CeTe_{1.82} seems to coexist with the CDW and magnetic phases.

Because of the quasi-two-dimensional layered nature of $CeTe₂$, it shows strong anisotropic behavior in transport and magnetic properties. Upon cooling, the *ab*-plane resistivity and susceptibility indicate the insulator-tometal (IM) transition at $T_{IM} = 5.8$ K and the AFM transition at $T_N = 4.3$ K. Neutron diffraction data were interpreted to represent the down-up–up-down (*ABBA*)-type AFM configuration along the *c* axis with the ferromagnetic (FM) Ce double layers above and below the Te(1) sheet [6]. In the presence of the magnetic field, a large negative magnetoresistance is observed, with a concomitant shift of T_{IM} toward higher temperature. To explain the anomalous transport and magnetic properties, the magnetic polaron picture was proposed [7,8].

The coexistence of the superconducting phase with the CDW phase in $CeTe_{2-\delta}$ is reminiscent of that in superconducting transition-metal dichalchogenides. For example, layered $2H\text{-NbSe}_2$ exhibits the incommensurate CDW transition below 35 K and the phonon-mediated superconductivity at $T_c = 7.2$ K. The superconducting carriers in $2H\text{-NbSe}_2$ are known to be Nb 4*d* electrons [9]. In contrast, neither the carrier type nor the origin of superconductivity in $CeTe_{2-\delta}$ has been clarified yet. Further, the effects of nonstoichiometric Te defects and pressure on the electronic structure of $CeTe₂$ have not been addressed.

In order to understand the underlying physics of $CeTe₂$ properly, it is essential to investigate its electronic structure systematically. In this Letter, we report the firstprinciples band structure results for $CeTe₂$. We have also studied the band structure of $LaTe₂$ for comparison. We used the linearized muffin-tin orbital (LMTO) band method with the atomic sphere approximation both in the local spin density approximation (LSDA) and the $LSDA + U$ (*U*: on-site Coulomb interaction) band methods. The spin-orbit (SO) interaction was incorporated so that the orbital polarization is properly taken into account [10]. We included the valence-band muffin-tin orbitals up to *f* states for Ce and La, and up to *d* states for Te. Since 5*p* states of La and Ce are rather shallow, they are considered as valence states. To examine the CDW instability in $RT\mathbf{e}_2$, we calculated their Fermi surfaces and susceptibilities. Then to investigate the effects of the CDW and Te vacancies on the electronic structures, we considered the distorted monoclinic LaTe₂ $[2 \times 2 \times 1]$ supercell (8 f.u. of $LaTe₂$) with the *P*1*c*1 space group] which has the herringbone patterns [11], and the distorted tetragonal CeTe₂ [$2 \times 2 \times 2$ supercell (16 f.u. of CeTe₂) with the *P*4 space group] which has the double herringbone patterns [5]. We also estimated the superconducting parameters based on the rigid-ion approximation [12].

Figure 1 shows the band structure of $LaTe₂$, obtained by using the LSDA method, and that of $CeTe₂$, obtained by using the $LSDA + U$ method. We considered the tetragonal structure for $LaTe₂$ with the lattice constants of $a = 4.56$ and $c = 9.12$ Å, and the doubled tetragonal structure along the *c* direction for CeTe₂ with $a = 4.47$ and $c = 18.22$ A and the *ABBA*-type AFM configuration. The Ce $4f$ states in CeTe₂ are considered to be localized

FIG. 1. The LSDA band structure of $LaTe₂$ (top) and the $LSDA + U$ band structure of $CeTe_2$ (bottom). Γ , *X*, *Z*, and *M* represent the (0,0,0), (1/2, 0, 0), (0, 0, 1/2), and (1/2, 1/2, 0) **k** points in the simple tetragonal Brillouin zone. The size of the circle represents the contribution of the Te(1) $5p$ states in the wave function.

far below E_F , which is supported by the angle-resolved photoemission spectroscopy (ARPES) data (Fig. 3). Thus the $LSDA + U$ method will be more appropriate to describe the Ce 4*f* states than the LSDA method. We have used $U = 7$ eV and the exchange parameter $J = 0.95$ eV for Ce 4*f* electrons [13]. The overall shape of the band structure of $LaTe₂$ (top of Fig. 1) is similar to that in literature [3,11]. The highly dispersive bands crossing the Fermi level E_F are the Te(1) 5*p* states, which produce the large electron Fermi surfaces centered at *X* and the hole Fermi surfaces centered at Γ and M. The spin-orbit effect is negligible at the Fermi surfaces of Te(1) 5*p* bands. Figure 1 reveals that, except for Ce 4*f* bands, the band structure of $CeTe_2$ near E_F (bottom) is very similar to that of $LaTe₂$ (top). Therefore the Fermi surfaces of $LaTe₂$ and $CeTe₂$ are also very similar to each other and they produce the similar nesting feature.

Figure 2 compares the Fermi surfaces of $LaTe₂$ and CeTe2. Both compounds show the very similar Fermi surface nesting of Te(1) $5p$ bands along the [100] direction. The CDW instability in the Te(1) sheet is driven by this nesting property [3]. The small difference between CeTe₂ and LaTe₂ is the location of the *R* 5*d* bands, which cross E_F near Γ : a small La 5*d* electron pocket centered at Γ is clearly seen for LaTe₂, whereas Ce 5*d* states near E_F are nearly degenerate with the Te(1) $5p$ states so as to show Γ -centered hybridized Fermi surfaces for CeTe₂. This difference is mainly due to the smaller volume for $CeTe₂$ than for LaTe₂. The smaller lattice constant for CeTe2, especially in the *ab* direction, results in the larger 156406-2 156406-2

FIG. 2. Fermi surfaces of $LaTe₂$ (top left) and $CeTe₂$ (top right). The arrows correspond to the nesting vectors along the [100] and [110] directions. Bottom: Calculated susceptibilities for LaTe₂ and CeTe₂. $\chi_0(\mathbf{0})$ is normalized to DOS at E_F in each case.

direct *R*-*R* interaction so as to lower the Ce 5*d* bands near Γ point [11].

The nesting feature can be checked by examining the bare electronic susceptibility χ_0 that is obtained from the band structure output [14]:

$$
\chi_0(\mathbf{q}) = \frac{1}{N} \sum_{n,n',\mathbf{k}} \frac{f(\epsilon_{n,\mathbf{k}})[1 - f(\epsilon_{n',\mathbf{k}+\mathbf{q}})]}{\epsilon_{n',\mathbf{k}+\mathbf{q}} - \epsilon_{n,\mathbf{k}}},\tag{1}
$$

where $f(\epsilon)$ is the Fermi-Dirac distribution function, and $\epsilon_{n,k}$ and $\epsilon_{n',k+q}$ are the eigenvalues at **k** and **k** + **q** of the first Brillouin zone with the band indices n and n' . As shown at the bottom of Fig. 2, the calculated susceptibilities for both $LaTe₂$ and $CeTe₂$ indeed have peaks near *X*, which is consistent with the Fermi surface nesting along [100]. Smaller peaks are also seen near $\frac{1}{2} \Gamma M$, which is again consistent with the Fermi surface nesting along [110].

The top of Fig. 3 shows the bands having the Ce 4*f* character. The well localized Ce 4*f* bands are located at \sim - 4.0 eV and at 1.0–2.5 eV. Noteworthy is the dispersive bands near Γ at \sim - 1.0 eV with the Ce 4*f* contribution of \sim 20%, for which Ce 4f and Te(2) 5p states are strongly hybridized [15]. In addition, there is a convex band above E_F centered at *M* composed of Ce 4*f*-Te(1) 5*p* hybridized states. However, the weight of Ce 4*f* states near E_F is rather low. The existence of the localized and dispersive Ce 4*f* bands is consistent with the ARPES spectra of CeTe₂, obtained from the Ce $4d \rightarrow 4f$ finestructure resonance [16], shown at the bottom of Fig. 3. The angle θ_e labeled at each set of spectra denotes the emission angle in the *ab* plane along the lines parallel to the polarization of the incident light. The Ce 4*f* ARPES spectra show the typical two-peak structures, with the

FIG. 3. Top: LSDA + U band structure of $CeTe_2$ with the Ce 4*f* contribution larger than 18%. Bottom: The extracted Ce 4*f* ARPES spectra of $CeTe_2$. These spectra were extracted from the Ce $4d \rightarrow 4f$ fine-structure resonance (Ref. [16]).

lower binding energy (BE) peak around 1 eV, and the higher BE peak around 4 eV. The high and low BE peaks correspond to the $4f^0$ and $4f^1$ final-state peaks, respectively [17,18]. The low BE peak arises from the hybridization between the Ce 4*f* and valence-band electrons. It is observed that the low BE peak reveals a significant dispersion, while the high BE peak reveals no detectable dispersion. The dispersion of the low BE peak amounts to more than \sim 300 meV between $\theta_e = 0^{\circ}$ and $\theta_e = 12^{\circ}$ $[\Delta k \approx 0.8(\frac{2\pi}{a})]$. The highly dispersive nature of Ce 4*f* states in $CeTe₂$ is consistent with the finding in the theoretical band structure, reflecting the strong hybridization between Ce 4*f* and Te(2) 5*p* states. Note also that the contribution near E_F from Ce 4f electrons is negligible, again in agreement with the theoretical band structure.

To investigate the effect of the CDW on the electronic structure of $RTe₂$, we have studied the electronic structures of the CDW-distorted $LaTe₂$ and $CeTe₂$. We have found that both compounds have the similar trends in density of states (DOS) near E_F . Hence we present in Fig. 4 the DOS of $LaTe₂$ only. For the CDW-distorted $LaTe₂$ (dot-dashed), the opening of the CDW gap is evident, i.e., the DOS near E_F is much suppressed as compared to that of the nondistorted $LaTe₂$ (solid). In fact, by the CDW arrangement in the Te(1) sheet, Te(1) $5p$ bands near E_F are split to have the energy gap of \sim 0.2 eV. The lower Te(1) 5*p* band still crosses the Fermi level. On the other hand, the other states near E_F are hardly changed. Consequently the system is semimetallic even in the CDW phase. The left inset of Fig. 4 shows the corresponding Fermi surfaces for the CDW-distorted LaTe₂: the La 5*d* electron pocket at Γ and the boomerang-shaped hole Fermi surfaces of Te(1) 5*p* bands. These results are consistent with the observed metallic ground state of $LaTe₂$ [19].

FIG. 4. The LSDA DOSs of tetragonal LaTe₂ (nondistorted) (solid), CDW-distorted LaTe₂ with the original (dot-dashed) and the reduced (double dot-dashed) volume, and CDWdistorted LaTe_{1.75} with the original (dashed) and the reduced (dotted) volume, respectively. Left inset: Fermi surface of the CDW-distorted LaTe₂ with the original volume. Γ , Z, C, and *Y* represent $(0,0,0)$, $(0, 0, 1/2)$, $(0, 1/2, 1/2)$, and $(0, 1/2, 0)$ **k** points in the monoclinic Brillouin zone. Right inset: schematic diagram of the charge transfer from Te(1) $5p$ to R $5d$ states induced by the pressure.

By applying the pressure, the charge transfer occurs from the Te(1) 5*p* to the La 5*d* bands due to the upward and downward shifts of the Te(1) 5*p* and La 5*d* bands, respectively, as illustrated in the right inset of Fig. 4. The CDW-distorted $LaTe₂$ with the reduced lattice constant by 2% has the slightly enhanced DOS at E_F as compared to that with the original volume. Of course, the negative pressure yields the opposite behavior. With increasing the lattice constant by 4% (negative pressure), the CDW-distorted LaTe₂ shows the pronounced insulating behavior.

It is known that vacancies are easily formed in the $Te(1)$ sheets. Hence we have investigated the electronic structure of nonstoichiometric $RTe_{1.75}$, where vacancies are regularly arranged on the well-separated specific Te sites in the Te(1) sheets $[Te(11)]$ sites in the Stöwe's notation [11]]. Here, too, we have considered the band structure of LaTe_{1.75} for the computational simplicity. Te vacancy would play a role of electron doping. It turns out, however, that the simple rigid band scheme does not work. Because of the Te(1) vacancy, the band structure near E_F is drastically changed, that is, as shown by the dashed line in Fig. 4, the states above E_F mostly of Te(1) $5p$ character are suppressed and Te(1) $5p$ states at E_F are shifted up to induce the hole doping in Te(1) $5p$ bands. Another noteworthy feature is the localization of Te(1) 5*p* carriers which reduces the overall bandwidth of Te(1) 5*p* states by \sim 10% and so increases the DOS at E_F . Hence the resulting DOS at E_F becomes higher than that of the CDW-distorted $LaTe₂$. The hole-doping process in the Te(1) sheet can also be controlled by pressure as in LaTe₂. Accordingly, the boomerang-shaped Te(1) $5p$ hole Fermi surface obtained for the CDW-distorted $LaTe₂$ becomes larger due to the Te vacancy and the positive pressure. We expect that these increased selfdoped Te(1) 5*p* hole carriers are responsible for the pressure-induced superconductivity observed in nonstoichiometric CeTe_{2- δ}.

Note that the superconductivity in $CeTe₂$ is realized only for the nonstoichiometric Te-deficient sample under the pressure. So we have examined the superconducting properties for the CDW-distorted *RTe*₂ and the CDWdistorted nonstoichiometric *R*Te₁₇₅. Here, too, we used the band outputs for $LaTe₂$. Since the coexistence of superconductivity and the CDW phase indicates that the electron-phonon interaction plays some role, we have calculated the superconducting parameters within the rigidion approximation [12]. The electron-phonon coupling constant λ_{ph} is evaluated by employing the McMillan's formula [20], $\lambda_{ph} = \sum_{\alpha} [N(E_F)\langle I_{\alpha}^2 \rangle / M_{\alpha} \langle \omega_{\alpha}^2 \rangle]$, where $\langle I_{\alpha}^2 \rangle$ is the average electron-ion interaction matrix element for the α th ion, M_{α} is an ionic mass, and $\langle \omega_{\alpha}^2 \rangle$ is the relevant phonon frequency. We have used the average phonon frequency $\langle \omega^2 \rangle \simeq \Theta_D^2/2$, where Θ_D is the Debye temperature. The main contribution to $\langle I_{\alpha}^2 \rangle$ comes from Te(1) 5*p* electrons. By using the experimental value of $\Theta_D \sim$ 128 K, we get $\lambda_{ph} = 0.15$ and $\lambda_{ph} = 0.57$, for LaTe₂ and LaTe₁₇₅, respectively. Then the McMillan's formula for T_c with an effective electron-electron interaction parameter $\mu^* = 0.13$ yields $T_c = 0.0$ and $T_c = 1.4$ K, respectively. This result suggests that nonstoichiometry is very important.We can expect that the additional pressure effect would enhance the superconductivity. Indeed with the lattice constant contracted by 2%, λ_{ph} and T_c are enhanced to 0.71 and 2.9 K, respectively. We note that these enhancements arise not only from the change of bandwidth at E_F but also from the hole-doping process in the Te(1) sheets, as discussed in Fig. 4. The calculated value of $T_c = 2.9$ K for pressurized LaTe_{1.75} is in reasonable agreement with the experimental value of $T_c =$ 2.7 K of CeTe_{1.82}.

One important issue to be resolved is how superconductivity in CeTe_{1.82} coexists with magnetism. The assumed *ABBA*-type AFM configuration for $CeTe₂$ would hinder the singlet superconductivity in the Te(1) sheets. More plausible in this environment would be the triplet pairing interaction for CeTe₂, mediated by the ferromagnetic fluctuations. However, the extreme sensitivity to the Te vacancy reflects that the magnetic fluctuation will not be the primary source of the pairing interaction [1]. The following reasons can be invoked to support the singlet superconductivity in $CeTe₂$. First, if the exchange interaction between Ce $4f$ -Te(1) $5p$ states is weak, the singlet superconductivity would survive even in the magnetic phase, similarly as in a magnetic superconductor $ErRh₄B₄$. Indeed the band structure of $CeTe₂$ (shown in Fig. 2) manifests the rather weak hybridization between Ce $4f$ and Te(1) $5p$ states near E_F . This hybridization would be suppressed further by the opening of CDW gap at E_F . Second, if the magnetic moments of Ce ions surrounding the Te(1) sheets are antiferromagnetically aligned, the singlet superconductivity would be possible in the magnetic phase. The observed metamagnetic transition [21] at a very low magnetic field, $H = 700$ Oe, implies that the stability of the *ABBA*-type AFM configuration is not very strong. We have found the negligible total energy difference between the *ABBA*-type AFM configuration and other AFM configurations in which the surrounding Ce-Te layers are antiferromagnetically coupled, i.e., the *ABBA* type is lower in energy than the *ABAB* or *AABB* type by only ≤ 5 meV/f.u., indicating that the stability of the *ABBA*-type AFM configuration is not so strong. Therefore one can speculate that, upon cooling, the AFM configuration in $CeTe_{1.82}$ is easily changed to become compatible with the singlet superconductivity. These reasons remain to be checked carefully by experiment.

This work was supported by the KRF (KRF–2002- 070-C00038) and by the KOSEF through the eSSC at POSTECH and the CSCMR at SNU. Helpful discussions with S.J. Youn, U.-J. Yu, Y. S. Kwon, and M. H. Jung are greatly appreciated.

- [1] M. H. Jung *et al.*, Phys. Rev. B **67**, 212504 (2003).
- [2] E. DiMasi *et al.*, Phys. Rev. B **54**, 13 587 (1996).
- [3] A. Kikuchi, J. Phys. Soc. Jpn. **67**, 1308 (1998).
- [4] M. H. Jung *et al.*, Phys. Rev. B **63**, 035101 (2001).
- [5] K. Stöwe, J. Alloys Compd. **307**, 101 (2000).
- [6] J.-G. Park *et al.*, Physica (Amsterdam) **241B**, 684 (1997).
- [7] M. H. Jung *et al.*, J. Phys. Soc. Jpn. **69**, 937 (2000).
- [8] T. Kasuya *et al.*, J. Magn. Magn. Mater. **220**, 235 (2000).
- [9] T. Yokoya *et al.*, Science **294**, 2518 (2001).
- [10] S. K. Kwon and B. I. Min, Phys. Rev. Lett. **84**, 3970 (2000).
- [11] K. Stöwe, J. Solid State Chem. **149**, 155 (2000).
- [12] G. D. Gaspari and B. L. Gyorffy, Phys. Rev. Lett. **28**, 801 (1972).
- [13] These parameters give the best agreement between calculated and measured Ce 4*f* spectra.
- [14] In our calculation, we have approximated the oscillator strength of the matrix element to be constant.
- [15] The feature of Ce $4f$ states at ~ -1.0 eV was also observed in the optical spectra by M. H. Jung *et al.*, Physica (Amsterdam) **230B–232B**, 151 (1997).
- [16] J.-S. Kang, C. G. Olson, and Y. S. Kwon (unpublished).
- [17] B. I. Min *et al.*, Phys. Rev. B **33**, 8005 (1986).
- [18] J.W. Allen *et al.*, Adv. Phys. **35**, 275 (1987).
- [19] B. H. Min *et al.*, Physica (Amsterdam) **312B–313B**, 205 (2002).
- [20] W. L. McMillan, Phys. Rev. **167**, 331 (1967).
- [21] B. H. Min *et al.*, Physica (Amsterdam) **312B–313B**, 203 (2002).