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Finite-Size Effects on the Structure of Grain Boundaries
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We present a combined experimental and theoretical analysis of the structure of finite-sized 23 {112}
grain boundaries in Au. High-resolution electron microscopy shows lattice translations at the grain
boundary, with the magnitude of the translation varying along the finite-sized grain boundaries. The
presence of this structural profile is explained using continuum elasticity theory and first-principles
calculations as originating from a competition between elastic energy and the energy cost of forming
continuous {111} planes across the boundary. This competition leads to a structural transition between
offset-free and nontrivial grain boundary structures at a critical grain boundary size, in agreement with
the experiments. We also provide a method to estimate the energy barrier of the y surface.

DOI: 10.1103/PhysRevLett.93.156101

Finite-size effects play a central role in physics, from
the appearance of discrete energy levels in quantum dots
to governing regimes of fluid flow. Recently, structural
transitions driven by size, such as shape transitions of
coherent precipitates [1] and magnetic phase transitions in
ferroelectric nanosystems [2], have further highlighted
the intriguing new physics that arises at reduced dimen-
sionality. Since structure determines material properties,
it is important to identify and understand these structural
transitions. This is especially true for grain boundaries
(GBs), specifically because grain boundary sliding is a
significant deformation mechanism in polycrystalline
materials, and is particularly sensitive to the detailed
atomic structure of the grain boundary [3].

Here, we show that the structure of the 23 {112} grain
boundary provides a striking example of the importance
of finite-size effects. Previous transmission electron mi-
croscopy works [4—7] have shown that this grain bound-
ary can relax through a lattice translation. However, these
studies, based on isolated observations of 33 {112}
boundaries, have painted a conflicting picture with re-
ported translations ranging from zero to half the {111}
plane spacing. Previously published computer simulations
of the structure of the {112} grain boundary predict a
translation as well, but ignore length effects by modeling
infinitely long boundaries [6,8—10]. To address these is-
sues, we have performed measurements on several grain
boundaries of varying sizes in gold, allowing us to sys-
tematically study the role of the boundary size on its
structure. By introducing a novel analysis of the high-
resolution electron microscopy (HREM) images to ex-
tract the translation along the grain boundary, we identify
a novel structural profile and discover a structural tran-
sition as a function of boundary length. This approach
explains the discrepancies in the previously published
results and provides a unified description of the 33
{112} boundary. Furthermore, our analysis allows us to
estimate, from the experimental data, the energy barrier
of the vy surface, and we present first-principles calcula-
tions of the y surface to support our findings.
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Gold films were vapor deposited on polished and water
etched (110)-oriented NaCl crystal substrates maintained
at 300 °C. After dissolving the substrate in water, free-
standing specimens were placed on a Au fine-meshed grid
and observed using a 4000-EX JEOL microscope oper-
ated at 400 kV. The films have a (110) texture with a high
density of interconnected %3 {111} and {112} grain
boundaries. An example of a {112} boundary bounded
by two {111} boundaries is shown in Fig. 1(a).

We are interested in the shift of the {111} planes along
the y direction, i.e., parallel to the boundary plane, in the
proximity of the grain boundary. The volume expansion
sometimes associated with grain boundary relaxation
[11] is not considered in this study. To extract the shapes
of the {I11} planes, the digitized HREM images are
divided into bands (of width 1.62 A corresponding to
the {112} plane spacing), parallel to the y direction. For
each band, the intensity is averaged over the x direction,
and this average oscillates in y with a periodicity equal to
dy, the {111} plane spacing far from the {112} grain
boundary. By fitting each local maximum with a sinusoi-
dal function, the position of each {111} plane can be
determined as a function of distance from the grain
boundary. The {112} boundary plane is a glide-mirror
plane, and it is placed unambiguously by reference to
the kite unit [9] in all observed boundaries, as indicated
in Fig. 1(b).

Such a measurement, shown in Fig. 1(c), indicates that
{111} planes on opposite sides of the boundary bend in
opposite directions, leading to an offset ¢. The offset ¢ is
not constant along the boundary but varies with y, ¢ =
&(y). Figure 2 shows measurements of ¢ along two
boundaries of length, w = 32 and 49 planes. The offset
is small near the ends of the boundaries and reaches a
maximum value at the center of the boundary. To under-
stand the origin of this structure, we now propose a model
for the finite-sized {112} boundaries.

The total energy of the boundary per unit length con-
sists of two contributions, E. = Eyreer + Eelas, Where
E i1ser 18 the energy cost associated with the plane offsets
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and given by the y surface that represents the ground state
energy of the interface as a function of the imposed
translation [12], while E,, is the elastic energy due to
the offset. A model description of the offset energy is
given by

E 2
Eotfser = 70 /COS[ Wz(y)}d% (1)

where E| is the barrier height per unit area and d,, is the
plane spacing (dy = 0.23 nm for the Au {111} plane spac-
ing). The cosine shape is justified by a first-principles
calculation described below.

The elastic contribution to the energy arises from the
presence of a force dipole at the grain boundary. On each
side of the boundary, there is an elastic restoring force
that favors straight planes. Since the planes are bending in
opposite directions on opposite sides of the boundary, the
force changes direction across the boundary. From iso-
tropic elasticity, the force in the y direction due to the
elastic displacements u is
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FIG. 1. (a) HREM image of a Au X3 {112} boundary of
length, w, equal to 22 {111} plane spacings and bounded by
two 23 {111} boundaries. (b) Embedded-atom method simula-
tion of the grain boundary showing the characteristic kite
feature. (c) Average of the y component of the displacement
along six {I111} planes in the middle of the boundary as a
function of distance from the {112} boundary.
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where p;; = 1(3;u; + 9;u;), K is the bulk modulus, and
M is the shear modulus. Because the ratio (K +
%M) /M =7 for Au (using the Voigt average for the elastic
moduli [K =1Cy; +3C1p, M = 1(Cy; — Cy) + 2 Cyy with

published values for the C’s [13]]), agy),y is of the same

order of magnitude as ag;,y [see Fig. 1(c) and Fig. 2 below],
and, because there is no experimental evidence for sig-
nificant displacements u,, we neglect the last two terms in
Eq. (2). Since u, is largest near the GB, we model the

force as a localized force near the GB,

7TMd0 azuy

fy = m 6—))2 _ [5()6 - (1) - 8()6 + (l)]j, (3)

where j is a unit vector in the y direction, o is the Poisson
ratio, and a is the {112} plane spacing. [To obtain
the magnitude of this localized force, we assumed a force
dipole f = k(0%u,/dy*)|,—, d‘;ix) j and calculated the
resulting displacement vector u from u;(r) = [G;(r —
r')f;(r')dr’', where G;(r) is the Green’s function for
an infinite isotropic elastic medium [14]. The constant k&
was fixed by requiring that ¢ (y) = u,(dy, y) — u,(—dy, y).]
The elastic energy per unit length is given by E.,, =
— [ fyuydxdy, and integration by parts gives the expres-
sion
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FIG. 2. Local displacement ¢ measured along two 23 {112}

grain boundaries of length w = 32 and 49 {111} plane spacings.
The solid lines are least-squares fits using Eq. (7).
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We define a parameter A corresponding to the ratio of

the energy scales of E,, and E g as
(1 - 0)E,

From the total energy E see; T Eclas, ONE Can now
understand the structural profiles observed experimen-
tally and shown in Fig. 2. In the absence of the elastic
energy, the offset energy is minimized by ¢ = = %, iLe.,
a constant half-plane offset across the boundary.
However, because the offset must be small near the edges
of the boundary, this constant ¢ profile leads to large
gradients at the edges. In the presence of the elastic
energy, such large gradients cost energy; hence the equi-
librium profile is a compromise between Esre; and Eyjy.

The profile ¢(y) can be obtained by minimizing the
total energy SE, /8¢ = 0, leading to the equation

27 . (27T¢>

— — Sin

a2
. ) AV2¢ = 0, ©)

0
with the assumption ¢ = 0 at y = =w/2. This model
does not take into account the nonzero offsets away
from the boundaries (Fig. 2), which may result from
elastic displacements and scatter in the experimental
measurements. The solution is

$0) = sin [ Bsn(ax, )] ™
a =216 =y, B=K'(GZV1/aw),
sn(a, B) is a Jacobi elliptic function, and K~ !(x) is the
inverse elliptical integral of the first kind [15].

We proceed to analyze our experimental data in the
following way. For a given experimental boundary of
length w, which is exactly the distance between the two
>3 {111} boundaries, we perform a least-squares fit of
Eq. (7) with the experimental data, for a range of values
of A. The solid lines in Fig. 2 show the best fits for two
boundaries of length w = 32 and 49 d,, and with the best-
fit values of A equal to 1757 and 665, respectively. More
generally, we have repeated the analysis for several
boundaries of length between 18 and 60 plane spacings,
and obtained an average value of A = 1044, with a lower
limit of 636 and an upper limit of 1757. Using Eq. (5) with
the Voigt average for the elastic moduli and the best-fit
values of A, we obtain an estimate for the barrier height,
Ey, = 0.50 eV/nm? *+ 0.24 eV /nm?.

In order to confirm this estimate of the barrier height,
we performed a first-principles calculation of the y sur-
face at z = 0 for the infinite %3 {112} boundary using a
method similar to that described in Ref. [10]. We began by
forming and relaxing infinitely long grain boundaries
with offsets ranging from —% <o <‘jl—2O and modeled
with periodic boundary conditions. Our unit cell (59
atoms) was 2.95A X723 AX61.9A in the [110],
[111], and [112] directions, respectively. Along the
[112] direction, this cell contained 12 A of vacuum, two
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(112) surfaces, and one {112} grain boundary. We used the
plane wave (cutoff energy = 230 eV) and the ultrasoft
pseudopotential [16] based code, VASP [17]. The k-point
sampling for the final calculation was 16 X 8 X 1.
Methfessel-Paxton smearing [18] of order one with a
smearing width of 0.2 eV was used. The atomic configu-
rations were relaxed until all atomic force components
were <0.01 eV/A. Minimum energy configurations for
the boundary were found to lie at ¢ = = %, which is in
marked contrast to the Al 23 {112} boundary which has
energy minima at ¢ = i%; * %ﬂ; ... [10]. Finally, the
energy of intermediate offsets was calculated using the
nudged elastic band method [19]. The results are shown in
Fig. 3 along with the cosine model described above. The
calculated energy barrier per unit area is Ey =
0.537 eV/nm?. Convergence tests were performed as a
function of k-point sampling, leading to the conclusion
that this barrier is converged to within =0.02 eV /nm?.
The good agreement between our estimated and first-
principles values of E; and the relatively narrow distri-
bution of A support the model description of the boundary
energy. Our results also predict a high theoretical shear
strength for the Au 23 {112} boundary, 1.1 GPa calculated
from the maximum slope of the y surface. This value is
comparable to the Au theoretical shear strength, approxi-
mated by % ~ 4.8 GPa [20], but much higher than the
critical resolved shear strength of 0.9 MPa [21].

While the above discussion indicates that relatively
long boundaries have a nontrivial structural profile, the
competition between Ej,, and E . leads to a structural
transition for smaller boundaries. Figure 4 shows the
measurements of the maximum displacement as a func-
tion of boundary length. A rapid increase in the maxi-
mum offset is observed for boundaries longer than ten
plane spacings, with a saturation to about half a plane
spacing for longer boundaries. As mentioned above, the
curvature of the {111} planes is in opposite directions on
opposite sides of the boundary plane [Fig. 1(a)] and the
maximum offset is determined from the least-squares fits
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FIG. 3. Predicted grain boundary energy versus offset ob-
tained from first-principles calculations. The solid line is the
energy variation used for the analytical model.
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FIG. 4 Maximum local displacement versus grain boundary
length. The solid line is obtained from Eq. (8) and A = 870; see
text for details.

described above. For short boundaries (fewer than about
ten planes), however, the curvature of the {111} planes
may be in the same direction on both sides of the {112}
boundary due to constrained atomic relaxation, and, for
these particular boundaries, the {111} plane offset is set to
zero. By choosing the positive direction of the y axis
when the kite unit is oriented as shown in Fig. 1(a) and
the bottom {111} twin boundary is placed on the left side
of the {112} boundary, ¢ is positive (negative) when the
x >0 side of the {112} boundary shifts upwards (down-
wards). Figure 4 shows that boundaries sample positive
and negative offsets indicating that symmetry breaking
occurs for the Au {112} boundary.

From the analytical model, we obtain the maximum
offset as a function of length as

Do = %sin_l[K”(W\/%w)} (8)

Figure 4 shows the predicted behavior from this equation
for A =870 [obtained from Eq. (4) and the first-
principles value of E;]. The general trend is reproduced,
with a rapid rise of the maximum offset around 15 planes.
For shorter grain boundaries, the predicted equilibrium
structure is ¢(y) = 0, i.e., no offset along the length of
the boundary. Hence, there is a structural transition at a
critical boundary length, from offset-free boundaries at
short length to boundaries with nontrivial offset profiles
for longer lengths. The presence of a transition can be
understood by further analysis of Eq. (6). Near the tran-
sition point, the maximum offset is small, and the profile
can be approximated as ¢(y) = A cos(wy/w), with A <

1; substitution in Eq. (6) leads to A = (v2d,/m) X

/1 — Ad3/4w?. The solution is real as long as

ﬁde =W, ©)

defining the threshold length w*. For A = 870, the

w >
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threshold length is w* = 15 plane spacings, as shown in
Fig. 4. For lengths w < w*, the elastic energy is too costly
to sustain any sort of offset structure.

In summary, we have shown that finite-size effects play
a strong role in grain boundary physics, leading to a
structural transition as a function of grain boundary
size. The analysis presented here is general and could be
applied to identify and study structural transitions in
other grain boundary materials.
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