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Using path integral Monte Carlo simulations we calculate exchange frequencies in bulk hcp “He as
atoms undergo ring exchange. We fit the frequencies to a lattice model and examine whether such atoms
could become a supersolid, that is, have a nonclassical rotational inertia. We find that the scaling with
respect to the number of exchanging atoms is such that superfluid behavior will not be observed in a

perfect “He crystal.
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Recent torsional-oscillator observations by Kim and
Chan on solid “He, both in the disordered absorbed vycor
[1] and in bulk *He [2], have revived interest in the
supersolid phase. In this phase, one has both long-range
crystalline order and superfluidity. Experiments find a
superfluid response to rotation at temperatures below
0.2 K. The low temperature superfluid density is about
1% of the solid density and is found to be independent of
density within a pressure range of 25 to 60 bars. In the
following, we assume the observed phenomena is de-
scribed by equilibrium thermodynamics of pure bulk
helium. In practice, whether this is the case is one of
the most important issues. Assuming equilibrium [3], a
supersolid is characterized by both long-range transla-
tional order and by a nonclassical response to rotation
(NCRI).

In proposing such a state, Andreev and Lifshitz [4]
postulated the existence of suitable defects (e.g., vacan-
cies) and then estimated the properties of the dilute
system of bosonic defects. The superfluid transition tem-
perature of point bosons is T, = 3.31p%31%/m where p is
the density of the Bose condensing quasiparticles and m
their effective mass. Taking the measured value for T, =
0.2 K, writing the mass in terms of the bare helium atom
mass m = um, and their density as a fraction ¢ of the
bulk helium density at melting p = 0.029 A~3 we find
that ¢ = 0.012u%/2: if the quasiparticle is heavier than a
helium atom, at least one out of every 83 lattice sites must
have a defect; if the mass is 1/10 the atom mass, the
relative density of defects will need to be 4 X 10™*. Such
a dense collection of defects could not be associated with
the much lower concentration of 3He impurities.

Experiments, particularly the NMR experiments [5,6]
on solid *He rule out zero point vacancy concentrations of
more than one part in 10!, Pederiva et al [7] have done
calculations of the energy of vacancies and find an energy
of about 15 = 4 K in the hcp phase of bulk “He at the
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melting density, and 30 K at 50 bars, in agreement with
various experiments, most notably x-ray scattering [8].
Using path integral calculations (described below) we
estimate the energy to create an interstitial at the melting
density is 48 £ 5 K; they are even more improbable than
vacancies. Hence, the energies of point defects are sub-
stantially greater than zero; in equilibrium there should
not be enough of them at 0.2 K to Bose condense; this
precludes the Andreev mechanism for a supersolid.

In this Letter we examine the possibility that bulk solid
hep helium, assumed to be free of defects such as impu-
rities and vacancies, could have a supersolid phase. One
might think that there would always be ground state
defects, arising from the large quantum zero point fluc-
tuations. Near melting, the rms vibration about the lattice
site is 30%, so that at any instant of time, a good fraction
of atoms are closer to a neighboring site than to their
home site. However, the absence of an atom from a lattice
site is not sufficient for having a supersolid; if the empty
site is always accompanied by a doubly occupied site,
there can be no mass current. Chester [9] proved that any
Jastrow (i.e., pair product) wave function of finite range
has both Bose-Einstein condensation (BEC) and vacan-
cies. However, Jastrow wave functions crystallize with
much difficulty and with a transition density off by an
order of magnitude [10] so that they are not reliable
enough to be used to predict superfluidity. In general,
variational wave function approaches are suspect, since
the energy is not sensitive to the low probability regions
of configuration space that are important for the super-
fluid density and Bose condensation.

Leggett [3] has written an upper bound to the superfluid
density in terms of the zero temperature density of the
solid. Using densities from path integral calculations, we
find that the Leggett bound gives p,/p < 0.16 at the
melting density, a value consistent with experiment. In
this Letter, we calculate values for ring exchange fre-
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quencies and using them, find that the superfluid density p
should be zero in solid helium. Z= ZOZ l_[fp,»(ﬁ): 3)
P i=1

To determine whether bulk helium could be supersolid,
path integrals give a much cleaner framework; they can
be used to compute the superfluid density and the mo-
mentum distribution without the assumption of a trial
wave function or any other uncontrolled approximation.
The partition function of N bosons is

1 _
Z= m;de(Rle BH|PR), (1)

where H is the Hamiltonian, B the inverse temperature,
and R = {r|, r,, ...ry}. For numerical calculations, the
density matrix operator is expanded into a path, begin-
ning at the configuration R and ending at PR. In terms of
these paths, the superfluid density (i.e., the number of
atoms not moving with the walls of the torsional-
oscillator) is given by

Ps _ m(W W)
P RBN

where W = fg dtYN | dr;(r)/dt is the winding number of
the path around a torus. It is only exchanges on the order
of the sample size that contribute to the superfluid den-
sity; local exchanges make no contribution. Using the
path integral Monte Carlo (PIMC) method, superfluidity
and freezing happen naturally at the right density and
temperature, without imposing them in any way. The
technical complications [11] concern ergodicity of the
random walk, and finite size effects: one has to take the
limit as N — .

PIMC calculations find a superfluid density on the order
of 3% at melting density (molar volume 21.04 cm?) and
about 1.2% at 55 bars (molar volume 19.01 ¢cm?) in a 48
atom (3 X 4 X 2) hep supercell. The superfluid density is
larger than what is observed, and has a relatively weak
pressure dependence. However, a cell with 180 atoms, has
zero superfluid density. We cannot be sure that the lack of
winding paths has a physical origin, or is due to a lack of
ergodicity within the PIMC random walk. To change from
one winding configuration to another involves a global
move of the paths which becomes very unlikely as the box
size gets large. To avoid this problem, we turn to a PIMC
approach which directly estimates individual exchange
probabilities.

The Thouless [12] theory of exchange in quantum
crystals assumes that at low temperatures, the system
will almost always be near one of the particular N!
arrangements of particles to lattice sites with rare, rapid,
tunnelings from one arrangement to another. Hence, we
label the particles with their initial lattice sites. Then the
partition function is written as a sum over permutations
of sites onto themselves. We break up the permutation into
cyclic exchanges {p;, p»...p,}; each cycle is indepen-
dent, so that

, 2
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where Zy = [dR(R|e #"|R) is an uninteresting phonon
partition function at low temperature. The contribution
for a cycle

1
18 =5 / dRRlePHpRY=1 .8 (&)

is proportional to  because it is localized in time; the
coefficient, J, is the exchange frequency.

A special case of the above partition function is the
Feynman-Kikuchi (FK) model [13] that assumes that
J, = Joe~*k» where L, is the cycle length. The partition
function is

Z=12yY (BJo)yre 2 b, 5)
P

We make contact with previous work by assuming 8J, =
1. Calculations were done assuming a cubic 3D lattice,
first by Feynman and Kikuchi analytically and then
numerically by Elser [14]. It is found that the superfluid
transition occurs as a becomes smaller from a localized
state (small cycles) to large cycles for a. = 1.44. To
understand this critical value, consider the free energy
of adding a link to an existing loop. A cubic lattice has
coordination number 6 but a return to the previously
visited site is impossible since it is a cyclic permutation.
Adding a link costs probability e~ but the entropy of the
new link is 5; hence a, ~ In(5) = 1.6. The critical value
is smaller because of the ‘“‘self-avoiding” restriction
within a cycle and on overlapping cycles. Using the
same argument for the hcp lattice gives a critical coupling
of o, = 2.3.

Using methods [15,16] developed for solid He, we
calculate the exchange frequencies and estimate how
close they are to the critical value. We assume the helium
interact with a semiempirical [17] pair potential. The
frequencies for 2, 3, and 4 atom exchanges is very small
[11], e.g., J, ~ 3 K at melting density. However, small
cyclic exchanges are quite different from the long ex-
changes needed to get a supersolid. We have performed
exchange calculations of 50 different exchanges involv-
ing from 5 to 10 atoms. All exchanges involve nearest
neighbors, since calculations show that next-nearest ex-
changes are much less probable. We obtain accuracies on
the order of 5% for the five-particle exchanges and 10%
for the nine particle exchanges. More than half of the
exchanges involve winding around the cell boundaries,
important because they are representative of the type of
exchanges in a supersolid.

Figure 1 shows the results of calculations of the fre-
quency of the simplest winding exchanges: straight line
exchanges in the basal plane. As assumed in the FK
model, we find that the exchange frequencies decrease
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FIG. 1 (color online). The exchange frequencies (J in K)
versus exchange length L, for straight line exchanges in the
basal plane that wind around the periodic cell. The inset shows
the lattice sites in the basal plane for L, = 6; the red (gray)
atoms show the atoms midway through the exchange. The
circles with error bars are the In(J) at 2 M volumes;
21.04 cm® (black, open circles, solid line) and 19.01 cm? [red
(black) solid circles, dashed line]. Multiple points at the same
value of L, are from cells with different number of atoms in the
directions perpendicular to the exchange direction. The lines
are least squares fits.

exponentially with the length of the exchange with an
exponent of a =2.64 near the melting volume
21.04 cm?, and @ = 3.14 at the volume 19.01 cm? corre-
sponding to P ~ 60 bars.

To construct a more realistic model than the FK model,
we need to take into account more details of the geometry
of the exchange than just the number of exchanging
atoms. We assume that it is the internal geometry of the
exchange that matters [18]; the detailed arrangement of
the neighboring spectator atoms is much less important.
In particular, we assume the action of a given n cycle (the
log of the exchange frequency) is the sum over the inter-
nal vertices of the exchange

P
J,=Jy exp[— Z a(0k)} (6)
=

Here 6, are angles between successive displacements in
the exchange cycle. In an hcp lattice there are seven
possible angles between two nearest neighbor displace-
ment vectors, but § = 0 occurs only in the pair exchange.
We determine the parameters by fitting to the PIMC
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exchange frequencies J,. Good fits are obtained; the
model predicts the exchanges frequencies with an accu-
racy of about 20%. The resulting coefficients are shown in
Fig. 2. Typical errors on the coefficients are +0.03. Note
that there is a strong preference for exchanges that pro-
ceed in a straight line versus ones which have sharp
angles; for them the incoming and outgoing particles
are more likely to collide. The fitting coefficients are
seen to depend linearly on cos*(#/2). We find no prefer-
ence for exchange in the basal plane beyond the effect
induced by the selection of angles.

We also verified this model by comparing with results
of the direct PIMC calculations (where permutations are
generated dynamically) mentioned above and obtained
rough agreement with the winding numbers and permu-
tation cycle distributions. The two and three-particle ex-
changes are about twice the prediction of model. On the
other hand, the exchanges in the 180 atom cell are some-
what smaller than Thouless theory. We expect such dis-
agreements because Eq. (6) does not contain the effect of
spectator atoms on the exchange process, and small ex-
changes have not been included in the fit.

The activation coefficient of the exchange is J, =
7.2 = 0.5 K. This is the order of magnitude but smaller
than the vacancy energy. If it is related to vacancies, then
Jo should be of the same order of the vacancy energy at all

‘ L1
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FIG. 2 (color online). The model parameters vs cos*(6/2) at
the melting density (open circles). The angle is the interior
angle of the vertex as shown. The fits were done using 50
exchanges in a 180 atom cell. The solid red (black) circles
correspond to a pressure 60 bars. The two lines show a critical
supersolid Hamiltonian with (solid line) and without (dashed
line) angular dependence.
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densities, but on the contrary, we do not find a significant
density dependence.

We now analyze the model. Because the probability of
retracing is small, we initially neglect the self-
intersections. This leads to a diffusion problem on a
lattice, with a large probability of continuing in the
same direction. Since a displacement only depends on
the previous displacement, it is an un-normalized
Markov process. (Because the hep lattice has a basis, we
have to label the displacements consistently on the A and
B planes so that the transition probabilities are indepen-
dent of the plane.) The probability of a given displacement
vector I1; will approach a steady state after many steps, (i
refers to one of the lattice directions) and satisfy the
eigenvalue equation

ZHie“U = All;. (7

By symmetry II; can only depend on whether the direc-
tion is in the basal plane II; or out of the basal plane II,.
Define the partial sum D;; = > .e” % where (i, j) are
either in the basal plane (1) or out of it (2), e.g., Dy; is
the sum of the probability of both vectors being in the
basal plane). The eigenvalue A, is the solution to the
secular equation

(Dy; — A)(Dy — A) — D3, = 0. (8)

Putting in the model parameters, we find A = 0.303 =
0.005. The probability of having an exchange of length p
will equal a prefactor times A”, hence, since A <1, our
PIMC results imply that solid “He will have only local-
ized exchange and thus cannot be a supersolid.

Let us consider how the neglect of the self-
intersections affects the critical value. Qualitatively,
self-intersections must decrease the probability of long
exchange cycles. To estimate the effect quantitatively, we
perform random walks on the hcp lattice and count only
nonintersecting walks. If we artificially change the model
parameters « by subtracting 1.2, the model becomes
critical when A = 1.03 as opposed to A = 1. This line is
shown in Fig. 2. Our computed value of A is much less
than what is needed to allow for a supersolid. We expect
that the presence of other exchange cycles will further
increase the critical value of A.
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In summary, PIMC-computed exchange frequencies
for hcp solid “He show that only localized exchanges
will be present and thus should not exhibit the property
of nonclassical rotational inertia. Based on other theo-
retical and experimental findings, we think it unlikely
that the observed phenomena are due to vacancies, inter-
stitials or *He impurities. Hence, one must look for an
explanation of the experiments elsewhere, either to non-
equilibrium effects or more complicated lattice defects.
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