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It is found that, with a model current profile, the Grad-Shafranov equation can be reduced to the
Helmholtz equation, which can describe a variety of equilibrium configurations. With the eigenvalue
problem solved in the toroidal coordinate system, an analytical solution to the Grad-Shafranov equation
is found. It is demonstrated that current reversal equilibrium configurations exist with finite radial
gradient of plasma pressure and continuous current density, and that current density reversal is
accompanied by pressure gradient reversal.
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The concept of tokamak fusion reactors crucially de-
pends on the sustainment of the toroidal electrical cur-
rent. To realize steady-state operation of a tokamak fusion
reactor, much effort has been made to improve the effi-
ciency of current drive; however, up to date, it is still
difficult to drive steady-state toroidal current with high
efficiency in the central region of a tokamak. Recent
progress in the tokamak fusion experiments [1,2] indi-
cates that a tokamak may be operated with nearly zero
toroidal current density in a finite central region. On the
other hand, alternating-current operation of a tokamak
has been demonstrated experimentally [3]. These experi-
ments are helpful to solve the problem of sustaining
plasma current. Therefore, understanding these experi-
ments is currently one of the key issues in tokamak fusion
community, and it is also of interest for those who con-
cern the final realization of controlled fusion energy.

The most interesting and challenging question raised
by the above experiments is whether the current reversal
equilibrium configurations (CRECs) exist or not, which
has resulted in active theoretical research activities [4–7].

In Ref. [7], it was numerically demonstrated that
CRECs really exist. However, in Ref. [7], only force-
free equilibria with zero plasma pressure gradient were
considered, and it was also assumed that the toroidal
current density could be discontinuous. Therefore, it is
of interest to investigate whether CRECs exist for a more
realistic situation without the force-free assumption and
the discontinuous current density assumption.

In this Letter, we propose an analytical theoretical
model for CRECs, and we shall demonstrate that
CRECs exist with finite radial gradient of plasma pressure
and continuous toroidal current density and that current
density reversal is accompanied by pressure gradient
reversal.

We begin with the Grad-Shafranov equation of toka-
mak equilibrium,�

x@x
1

x
@x � @2z

�
 � �

1

2
x2
d�
d 

�
1

2

dg2

d 
� �xj	; (1)
0031-9007=04=93(15)=155007(4)$22.50
where  � �=B0a
2 is the normalized poloidal magnetic

flux; x � R=a, z � Z=a, �� � � 2�0p� �=B
2
0, g� � �

F� �=B0a, with magnetic field represented by ~B �
F� �r	�r��r	; 	 is the ignorable angle in the
cylindrical coordinate system �R;	; Z�. p� � is the
plasma pressure; B0 is the vacuum magnetic field eval-
uated at R � R0 (x � x0); R0 and a are the major radius
and the minor radius, respectively. j	 � J	�0a=B0; and
J	 is the toroidal current density.

To investigate the CRECs with finite pressure and
continuous current density, we propose the following
analytical model,
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Consider the circular cross section. And make the
transform from the cylindrical coordinate system
�x;	; z� to the toroidal coordinate system �r; �;	�; with
x � x0 � r cos�; z � r sin�: Without loss of generality,
we take the boundary condition as  �r � 1� � 0:

We have found that it is convenient to consider the
toroidal vector potential instead of the poloidal flux.
Setting

 � xA; (3)

we found that
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A�r � 1� � 0: (4b)

Equation (4) is identified as a nonhomogeneous
Helmholtz equation in cylindrical geometry. This equa-
tion can be solved by the standard method of expansion
with respect to eigenfunctions [8].
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Consider a large-aspect-ratio tokamak (x0 � 1).
Taking the ordering  	O�1�; �	O�1=x20�; we have
A	O�1=x0�; a1 	O�1=x20�: Transforming Eq. (4) to
the toroidal coordinate system �r; �; 	�, to O�1=x20� we
have �
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To solve the corresponding homogeneous equation, we
make the Fourier expansion
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where A0�1 � 0 � AM�1 is understood. Solution to
Eq. (7) is readily found by making the expansion

Am �
XK
k�1

Cm;kJm��m;kr�; (8)

where Jm are Bessel functions, and Jm��m;k� � 0.
Substituting Eq. (8) into Eq. (7), through a lengthy but

straightforward mathematical manipulation, we found
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where D�0��
k;i � 0 � D�M��

k;i is understood and Jm;k �
�1=2�
Jm�1��m;k��

2:
Equation (9) is the algebraic form of the eigenvalue

problem. From Eq. (10), it is not hard to understand that
the eigenvalues are close to �m;k: The eigenvalue close to
�m;k shall be denoted as �m;k and the corresponding
eigenvector shall be denoted as Cm;kn;i ( n � 0; 1; . . . ;M;
i � 1; 2; . . . ; K). This eigenvalue problem is numerically
155007-2
solved; it is found that the dominating component of the
eigen-vector Cm;kn;i ( n � 0; 1; . . . ;M; i � 1; 2; . . . ; K) is
Cm;kn�m;i�k:

The eigenfunction corresponding to the eigenvalue
�m;k is
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With the eigenvalue problem solved, Eq. (5) is readily
solved by the standard method [8]. Expand with respect
to the eigenfunctions,
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It is straightforward to show that
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where in Eq. (16b) some small terms have been dropped.
It should be pointed out that the solution to the Grad-

Shafranov equation together with the model profile,
Eq. (2), presented above is correct to O�1=x20�, with x0
the aspect ratio. In our analytical solution, it is clear that
the toroidicity-induced poloidal harmonic coupling is
included not only through the eigenvalue problem de-
scribed in Eq. (7) but also through the geometrical factor
x in Eq. (3) and Eq. (14b).
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FIG. 1. Magnetic flux surfaces, normalized current density
(open circles) and normalized pressure (open triangles) for a
normal configuration with IN�1� � 0:33, IN�0:7� � 0:50, and
�V � 0:01. � � �0;1 � 0:06960, (�0;1 � 2:406904), a1 �
�0:04531, and a2 � �1:0808:.
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FIG. 2. Magnetic flux surfaces, normalized current density
(open circles) and normalized pressure (open triangles) for a
force-free CREC with IN�1� � 0:25, IN�0:7� � 0:00, and �V �
0:02. � � �0;2 � 0:04402, (�0;2 � 5:520984), a1 � 0:0, and
a2 � 0:05852.
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FIG. 3. Magnetic flux surfaces, normalized current density
(open circles) and normalized pressure (open triangles) for a
CREC with IN�1� � 0:25, IN�0:7� � 0:00, and �V � 0:02.
(a) � � �0;2 � 0:08818, a1 � 0:1193, a2 � 3:1034:
(b) � � �0;2 � 0:02088, a1 � �0:06325, and a2 � �1:5527.
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Now we are at the position to make a brief comparison
between our solution to a previous work [9], where

Eq. (2a) and (2b) was used. First, the main physics of
the present work is the CREC that was not discussed in
Ref. [9]. Second, although the differential equation
[Eq. (10) there] in Ref. [9] is equivalent to our Eq. (4a)
and hence it appears to be that Ref. [9] solved the same
nonhomogeneous Helmholtz equation, the unusual
boundary condition chosen there made the problem essen-
tially a homogeneous problem. Finally, Ref. [9] gave an
exact solution to the eigenvalue problem, as we have
indicated, by using the cylindrical coordinate system;
the reason we chose the toroidal coordinate system is
that it clearly reveals the toroidicity-induced poloidal
harmonic coupling, which is important in CRECs, as
has been discussed in the last paragraph; using cylindrical
coordinate system, we have obtained an exact solution to
Eq. (4a) with rectangular cross section and zero  bound-
ary condition; the results show similar CRECs, which
shall be published elsewhere.

Note that there are three free parameters, a1, a2, and �
in the solution. These three parameters can be determined
by the total current, the current inside a finite central
region (r � r0), and the plasma pressure, as will be dis-
cussed in the following.

Define the normalized current
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inverse of the safety factor. And the volume-averaged
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where �0 is chosen so that the minimum of the plasma
pressure (� � �0 � 2a1 ) is zero.

It is not hard to show that
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FIG. 4. Magnetic flux surfaces, normalized current density
(open circles) and normalized pressure (open triangles) for a
CREC with IN�1� � 0:25, IN�0:6� � 0:00, and �V � 0:00.
(a) � � �31 � 0:00586,(�31 � 6:379377), a1 � 0:09234, a2 �
0:1721: (b) � � �3;1 � 0:00102, a1 � 0:0758, and a2 �
�0:2507: (c) � � �3;1 � 0:03504, a1 � �0:04167, and a2 �
�3:2465.
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An equilibrium configuration is determined by speci-
fying the total current IN�r � 1� � IN1, the current inside
a finite central region IN�r � r0� � IN0, and the volume-
averaged beta-value �V � �V0. With a solution  �  0

given by � � �0, a1 � a10, and a2 � a20 satisfying
IN�1� � IN10, IN�r0� � IN00, and �V � �V0, a new solu-
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tion  � k 0 with the same shape of flux surfaces sat-
isfying IN�1� � kIN10, IN�r0� � kIN00, and �V � k2�V0
can be found by setting � � �0, a1 � ka10, and
a2 � ka20.

We found that a variety of equilibrium configurations
could be generated by the above formalism. A few typical
numerical examples will be presented in the following.

In Fig. 1, a normal configuration is shown. In Fig. 2, a
force-free CREC is shown. In Fig. 3 and Fig. 4, CRECs
with finite radial gradient of pressure are shown. From
Fig. 3 and Fig. 4, it is seen that more than one solutions
may be found for a given set of IN�1�, IN�r0�, and �V . It is
also seen from Fig. 3 and Fig. 4 that the current density
reversal is accompanied by pressure gradient reversal, as
is consistent with Ref. [6]. For the numerical examples
presented above, x0 � 5, j j � 0:3. It should be pointed
out that in the region with positive radial gradient of
pressure the plasma transport should be convection-
dominated.

In conclusion, we have found that with a model current
profile proposed, the Grad-Shafranov equation can be
reduced to the Helmholtz equation, which can describe
a variety of equilibrium configurations including the
CRECs with finite radial gradient of plasma pressure
and continuous current density. With the eigenvalue prob-
lem solved in toroidal coordinate system, we have found
an analytical solution to the Grad-Shafranov equation;
this solution has demonstrated that CRECs exist with
finite radial gradient of plasma pressure and continuous
current density, and that current density reversal is ac-
companied by pressure gradient reversal. Finally, it
should be pointed out that recent numerical simulations
found a reverse current could not be sustained because of
a tearing type instability [10]; the relevance of the
CRECs model proposed in this Letter to experiments is
still an open question.
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