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The lumped-mass method is applied to study the propagation of elastic waves in two-dimensional
binary periodic systems, i.e., periodic soft rubber/epoxy and vacuum/epoxy composites, for which the
conventional methods fail or converge very slowly. A comprehensive study is performed for the two-
dimensional binary locally resonant phononic crystals, which are composed of periodic soft rubber
cylinders immersed in epoxy host. Numerical simulations predict that subfrequency gaps also appear
because of the high contrast of mass density and elastic constant of the soft rubber. The locally resonant
mechanism in forming the subfrequency gaps is thoroughly analyzed by studying the two-dimensional
model and its quasi-one-dimensional mechanical analog. The rule used to judge whether a resonant
mode in the phononic crystals can result in a corresponding subfrequency gap or not is found.
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The propagation of elastic or acoustic wave in periodic
heterogeneous materials has received much renewed at-
tention in recent years [1–10]. Because of the periodicity
of such structures, there exist frequency ranges in which
waves are forbidden, giving rise to phononic band gaps
which are analogous to photonic band gaps [11–13] for
electromagnetic waves. These new materials can be of
real interest because of the rich physics of acoustic and
elastic systems, where the wave can have mixed longitu-
dinal and transverse modes, and where a large contrast
between the elastic parameters is allowed. For example,
locally resonant (LR) phononic crystals (PCs) consisting
of very soft rubber [1,4,9] (with an elastic constant of five
orders lower than common solids) and other components
are most likely to obtain the low-frequency gaps with a
structure of small dimensions, which can lead to promis-
ing applications such as low-frequency vibration or noise
insulations.

The lumped-mass (LM) method [7] is proposed re-
cently by us as a new way to compute the band structure
of two-dimensional (2D) PCs. The idea of the LM method
is the discretization of the continuous system. Thus, the
density of the medium is concentrated on discrete points
as particles and the elastic constants are treated as linear
elasticity between the adjacent particles. By employing a
finite number of particles in one period, the band struc-
ture can be calculated numerically with our discrete
model. Compared with other techniques, the LM method
converges faster and its convergence is independent of the
sharp variation of elastic constants on the interfaces in-
side the PCs [7].We improved the method [8] by replacing
the rectangular cells with arbitrary triangular ones in
order to describe the topologic structure in a lattice of
PCs more precisely.

Up to now, the LR PCs are all ternary systems, which
consist of a cubic array of coated spheres [1,3] immersed
in epoxy or of a lattice of coated cylinders [4] in epoxy
(the coatings are thin films of soft rubber). They predicted
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the existence of gaps in a frequency range of 2 orders of
magnitude lower than the one resulting from the Bragg
scattering mechanism, and explained the origin of this
phenomenon as due to the localized resonances associ-
ated with scattering units. Two-dimensional PCs com-
posed of lattices of polyethylene cylinders in Al were
previously researched [6], where no complete gap was
observed and where optical-like flat branches were found
in the band structure. The first flat branch locates at 1.9
in the reduced frequency unit, corresponding to a
lattice vibration mode localized in the softer material
(polyethylene).

Here, in order to discover the rule used for judging
whether a LR mode can result in a corresponding sub-
frequency gap or not, we analyze the binary counterparts
of the LR PCs which consist of a lattice of soft rubber
cylinders in epoxy.

First, we consider two of the same square lattices of
soft rubber (the same as Refs. [1,4,9]) and vacuum cylin-
ders in epoxy with a filling fraction fh � ��r=a�2 �
0:503, where r is the radius of the cylinder and a �
20 mm is the lattice constant. The elastic constants em-
ployed in the calculations are �epo � 1180 kgm�3,
	epo � 4:43� 109 Pa, 
epo � 1:59� 109 Pa, �rub �

1300 kgm�3, 	rub � 6� 105 Pa, and 
rub � 4� 104 Pa.
Figure 1 illustrates the dispersion relations in the rubber/
epoxy PCs. The out-of-plane modes [dashed lines in
Fig. 1(a)] as well as the in-plane ones [solid lines in
Fig. 1(b)] are computed with the LM method by employ-
ing 327 particles. The insets represent the corresponding
zooms. The frequencies are given in reduced units
!a=2�ct;epo, where ct;epo is the transverse wave velocity
in epoxy. For the vacuum-epoxy PCs, we make the simi-
lar calculations and plot the dispersion relations in Fig. 2.

A remarkable feature in Fig. 1 is the flat branches
crossing the whole Brillouin zone. These flat branches
are real and converged, corresponding to the resonant
modes illustrated in Figs. 3 and 4. Some of them split
2004 The American Physical Society 154302-1



FIG. 1. Dispersion relations of (a) out-of-plane modes and
(b) in-plane modes in binary PCs composed of the square
lattice of soft rubber cylinders in epoxy. The insets show the
corresponding zooms.
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the original dispersion curves (illustrated in Fig. 2) of the
vacuum-epoxy PCs, while the others just thrill through
them.

In detail, from Figs. 1(a) and 3, we can observe a
subfrequency gap in the frequency range from 0.0046 to
0.0058 (in reduced units), which is 2 orders of magnitude
FIG. 2. Dispersion relations of in-plane (solid lines) and out-
of-plane mode (dashed lines) in the PCs composed of the
square lattice of vacuum cylinders in epoxy. The insets show
the zooms.

154302-2
lower than the one resulting from Bragg scattering, as
observed in ternary cases [1,4]. This subfrequency gap
results from the first resonant mode plotted in Figs. 3(a)
and 3(b). At point T0a [Fig. 3(a)], the amplitude of the
vibrations is well concentrated in the region of rubber
cylinders, and it is very small in the hosting media. At
point T0b [Fig. 3(b)], the lattice vibrations are almost the
same except that the vibrations in the hosting media are
notable and in the reverse phase of that in the cylinders.
For both cases, rubber cylinders vibrate as mass-spring
oscillators. The time harmonic forces from oscillators to
the hosting structure split the original dispersion curves,
and a narrow gap is generated. As for the second and third
resonant modes illustrated in Figs. 3(c) and 3(d), which
look like the field map of a dipole, the forces from the
rubber oscillator to the hosting structure are counter-
acted. Their corresponding flat branches in the band
structure thrill through the original dispersion curves
and no gap is generated.

For the in-plane modes shown in Fig. 1(b), the first
resonant mode illustrated in Fig. 4(a) looks like a clock-
work torsion spring. Because of the aforesaid reason, i.e.,
the composition of the forces to the hosting structure
contributed by the oscillator is zero, its corresponding
flat branches in band structure just thrill through the
original dispersion curves and no gap is generated. As
for the second and third resonant modes illustrated in
Figs. 4(b) and 4(c) where the compositions of forces are
not zero, the dispersion curves are cut off at their corre-
sponding eigenfrequencies (0.009 88 and 0.009 96 in re-
duced units) in Fig. 1(b).

In order to support the resonant origin of the subfre-
quency gaps, we plot in Fig. 5 the dependency on fh of the
band edges determining the lowest gap of the out-of-
plane modes. In Figs. 5(a) and 5(b) the lattice constant
a is a constant, while in Fig. 5(c) the radius of the soft
rubber cylinder r keeps constant as 8 mm. The behavior of
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FIG. 3. Lattice displacement uz (the component parallel to
the cylindrical axis) in rubber/epoxy PCs, the same as for
Fig. 1. The selected modes are corresponding to points (a) T0a,
(b) T0b, (c) T1, and (d) T2 in Fig. 1(a), respectively.
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FIG. 4. Lattice displacement vector uxy (the mixed vector
vertical to the cylindrical axis) in rubber/epoxy PC, the
same as for Fig. 1. The direction and length of the arrows
represents the direction and amplitude of the displacement
vectors, respectively. The selected modes are corresponding
to points (a) L0, (b) L1, and (c) L2 in Fig. 1(b), respectively.
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the band edges is completely different from that charac-
terizing a Bragg gap (see, for example, Fig. 2 in Ref. [4]
or Fig. 3 in Ref. [9]). The upper panel shows that the
reduced frequencies of both edges reduce with fh. This
is a signature of their resonant origin. The pinning of the
edges are a consequence of their resonant characters of
their associated modes. Particularly, the bottom edge
corresponds to the localized vibration mode inside the
rubber, where the eigenfrequency is determined by the
oscillator consisting of rubber only. The upper edge cor-
responds to the vibration mode where the epoxy is also
involved. So the eigenfrequency of the upper edge is
FIG. 5 (color online). (a) The band edges determining the
first gap of out-of-plane modes in the 2D binary LR PCs for
several filling fractions (fh). (b) Behavior of the corresponding
normalized gap width. (c) Edges of the first gap in 2D binary
LR PCs with honeycomb (stars), triangular (triangles), and
square (filled circles) lattices for several fh. In (c), the frequen-
cies are given in Hz, and the radius of the soft rubber cylinders
r is kept constant while only the lattice constant a changes.

154302-3
slightly higher than the previous one. In Fig. 5(c) where
the radius of the rubber cylinders is a constant, the real
frequency of the lower edge keeps constant no matter how
other parameters such as lattice types or lattice constants
change. As a result, band gaps in such a system will also
appear even in the absence of periodicity. This is a sig-
nature of its localized nature.

In order to understand the physical insight of the
complicated system more clearly, we introduce a simple
quasi-one-dimensional analog model. As shown in
Fig. 6(a), the model consists of a linear beam with oscil-
lators periodically attached to it. TheYang’s module, cross
section area, and length density of the beam are E �
8� 109 Pa, S � 4� 10�4 m2, and �l � 2:8 kg=m, re-
spectively. The lattice parameters are aA � 19 mm
and aB � 1 mm. Each oscillator consists of two equal
masses (m1 � m2 � 16 g) and three springs (k1 � k2 �
38 000 N=m and km � 24 700 N=m). The parameters are
chosen in order to fit the 2D binary LR PCs as for
Fig. 1(a).

The mechanical system can be solved analytically by
the transfer matrix method [14]. The corresponding band
structure is illustrated in Fig. 6(b).

In Figs. 6(b) and 7, we can observe similar characters
shown in Figs. 1(a) and 3. A subfrequency gap exists in
the same frequency range as appears in Fig. 1(a). This
subfrequency gap results from the first resonant mode
plotted in Figs. 7(a) and 7(b). At point B0a, the vibration
of the system is well concentrated on the oscillators where
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FIG. 6. (a) The quasi-one-dimensional analog model which
is used to understand the physical insight of the 2D LR PCs.
(b) Band structure of the analog model (solid lines) or just a
single beam (dashed lines). The frequencies are given in
reduced units !a=2�cbeam, where cbeam is the longitudinal
wave velocity in the beam.
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FIG. 7. The displacements ux of the beam (solid line) and of
the two masses (filled circles). The selected modes are corre-
sponding to points (a) B0a, (b) B0b, and (c) B1 in Fig. 6(b),
respectively.
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the two masses vibrate with the same phase and ampli-
tude. So the eigenfrequency of the lower edge of the gap
can be calculated with

a
2�cbeam

�������������������
k1 � k2
m1 �m2

s
� 0:0046: (1)

At point B0b [Fig. 7(b)], the mode is almost the same
except that the vibration of the beam is not zero and in
reversed phase to that of the masses. Its eigenfrequency
that determines the upper edge of the gap can be calcu-
lated with

a
2�cbeam

����������������������������������������������������
k1 � k2
m1 �m2

�
1�

m1 �m2

�la

�s
� 0:0058: (2)

For both points B0a and B0b [Fig. 7(b)], the time har-
monic forces from the oscillators to the beam split the
original dispersion curves [of the beam only, illustrated
as dashed lines in Fig. 6(b)]. A subfrequency gap is then
generated. As for the second resonant mode illustrated in
Fig. 7(c) where the two masses vibrate with reversed
phases, the forces from the oscillator to the beam are
counteracted. Their corresponding flat branches in the
band structure thrill through the original dispersion
curves and no gap is generated. Its eigenfrequency can
also be calculated with

a
2�cbeam

�������������������
k1 � 2km

m1

s
� 0:007: (3)
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In conclusion, we have studied the propagation of elas-
tic waves in two-dimensional binary phononic crystals
consisting of lattices of soft rubber cylinders in epoxy,
i.e., the binary locally resonant materials. Numerical
simulations predict that the subfrequency gap also ap-
pears because of the high contrast of mass density and
elastic constants of the soft rubber. The locally resonant
mechanism is proved adequately and analyzed deeply. A
simple quasi-one-dimensional mechanical analog model
is introduced in order to understand the physical insight
of the locally resonant mechanism more clearly. We dis-
cover for the first time the rule used to judge whether a
resonant mode in the phononic crystals can result in a
corresponding subfrequency gap or not.
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