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In the semiclassical limit of open ballistic quantum systems, we demonstrate the emergence of
instantaneous decay modes guided by classical escape faster than the Ehrenfest time. The decay time of
the associated quasibound states is smaller than the classical time of flight. The remaining long-lived
quasibound states obey random-matrix statistics, renormalized in compliance with the recently
proposed fractal Weyl law for open systems [W. T. Lu, S. Sridhar, and M. Zworski, Phys. Rev. Lett.
91, 154101 (2003)]. We validate our theory numerically for a model system, the open kicked rotator.
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Open quantum systems are described by non-self-
adjoint operators and hence have different spectral prop-
erties than closed ones. Instead of an orthogonal set of
stationary bound states at real energies one encounters
mutually nonorthogonal quasibound states  n with com-
plex energies En, which decay exponentially in time with
a uniform decay rate �n=2 � �ImEn. The complex en-
ergies define the poles of the scattering matrix, for which
the random-matrix theory (RMT) provides a universal
benchmark in the case of random-wave dynamics [1] (for
applications to the transport in electronic nanostructures
see [2]). RMT has been derived for disordered systems
[3], while its status for ballistic dynamics is unsettled. In
this Letter we investigate ballistic systems that remain
open in the classical limit —the decay mechanism then
corresponds to ballistic escape of point particles into the
asymptotic scattering region. One goal is to uncover and
quantify deviations from RMT. We focus on the case of
classically chaotic systems (our methods are easily trans-
ferred to integrable or mixed dynamics).

We show that in approaching the classical limit of
these ballistic systems, the quasibound states separate
into two different classes. The classes are discriminated
by the Ehrenfest time �Ehr �

1
� lnN, up to which the

escape observes quantum-to-classical correspondence
[4]. (N is the number of ballistic escape channels and �
is of the order of the Lyapunov exponent.) Phase-space
regions with classical escape faster than �Ehr support
instantaneous ballistic decay with rate �n larger than
the inverse time of flight through the system. The quasi-
bound states with instantaneous decay develop a large
degree of degeneracy, which is accompanied by a drastic
departure from orthogonality—the states are almost-
linearly dependent. Nonorthogonality of states has been
identified [5,6] as the principal obstacle for the formula-
tion of Weyl laws to rigorously count the states in open
systems. We restore the applicability of the Weyl law and
estimate the relative fraction of instantaneous decay
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modes as 1�exp���Ehr=�dwell�, where �dwell is the mean
dwell time. The overwhelming majority of long-lived
quasibound states associated to phase-space regions
with classical escape slower than �Ehr are amenable for
an effective RMT [7], in which the dependence of the
effective matrix dimension on Planck’s constant con-
forms with the recently discovered fractal Weyl laws in
classically chaotic open systems [6].

The motivation for our work arises from the upsurge in
interest in the quantum-to-classical correspondence of
open quantum systems. That quantum-to-classical corre-
spondence invalidates the assumption of wave-chaotic
motion and implies nonuniversal corrections to RMT
was pointed out some while ago [8]. However, only recent
experiments and numerical investigations could access
the very large systems needed in view of the just-
logarithmic scaling of �Ehr with the effective system
size (here given by N). In transport, the Ehrenfest time
manifests itself in the suppression of shot noise [9–11] and
in the onset of classical conductance fluctuations [12]. It
also governs the impact of decoherence on dynamical
systems coupled to heat-bath environments [13,14].
Spectral footprints of the Ehrenfest time have only
been addressed for closed systems, in terms of the spec-
tral form factor [8,15] and the proximity-induced excita-
tion gap in a normal conductor next to a superconductor
[16,17].

For simplicity, we formulate our theory of quasibound
states for quantum maps F with 1 degree of freedom,
operating on states ’ in a Hilbert space of finite dimen-
sion M [18]. This dimension serves as the inverse of the
effective Planck’s constant, heff � 1=M. The evolution
over one unit time step including loss is given by ’�t�
1��QF’�t�, where Q is a projection operator of rank
M� N, which describes survival in the system. This
operator introduces subunitarity into the time evolution,
which is the equivalent to non-self-adjointness in the
energy domain. The mean dwell time is �dwell � M=N.
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For M ! 1 (i.e., heff ! 0) and fixed �dwell, the system
attains its classical limit, in which it is described by an
area-preserving map F operating on a bounded two-
dimensional phase-space of normalized area 1, while
survival is described by a projection operator Q onto
the complement of the openings. For illustration see the
phase-space portrait of the open classical standard map in
Fig. 1(a) (details of this system are given below).

Quasibound states are defined by the condition of qua-
sistationarity

QFQ n � �n n; �n � exp��iEn�; (1)

of the internal part of the wave function. Since QFQ is a
subunitary operator, the eigenvalues have modulus
j�nj 	 1, (i.e., lie inside the unit circle in the complex
plane), and the quasienergies En have a negative imagi-
nary part. The decay rate of a state  n is given by
�n � �2ImEn.

Our objective is to identify and count instantaneous
decay modes by exploring the quantum-to-classical cor-
respondence observed for escape times shorter than the
Ehrenfest time. At the outset, note the set of N trivial
short-lived states in the kernel of Q, all of which have
eigenvalue �m�0 (m � 1; . . . ; N). They can be collected
into the rows of an �M
 N�-dimensional matrix P0,
which fulfills Q � 1 � P0PT0 . The building blocks for
the construction of a much larger number of nontrivial
short-lived states are the connected phase-space regions
At;i of escape after t iterations (t � 1; 2; 3; . . . ), depicted
in Fig. 1(a).We denote the union of all regions with fixed t
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FIG. 1 (color online). (a) Regions of escape after one to four
iterations (as indicated in the figure) in the open standard map
(9) with K � 7:5, and escape for x 2 �0:2; 0:4� (�dwell � 5). The
other panels show Husimi representations of quasibound states
for Hilbert space dimension M � 160. (b) and (c) Short-lived
states with instantaneous ballistic decay (j�j< 10�8), local-
ized on the classical preimage of the opening. (d) and (e) Long-
lived states with random-wave characteristics. (f) Trapped
long-lived state (only one state of this kind exists for M �
160; it has the smallest decay rate).
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by At � [i2ItAt;i, where It contains all applicable indi-
ces. Associating a region A0 to the opening of the
system, these regions partition phase space.

Next, we introduce the regions Bt � [i2I0tAt;i, where I0t
restricts the index to areas larger than a Planck cell heff .
In this part of phase space the escape of initial wave
packets corresponds to the classical particle dynamics.
Consequently, we call B � [t<�EhrBt the region of
quantum-to-classical correspondence. The maximal in-
dex �Ehr arises because of the finite size of the Planck cell,
and defines the Ehrenfest time for ballistic escape.

In order to construct states supported by the region B
of quantum-to-classical correspondence, let us introduce
the characteristic projection operators [19]

P t �
Z
D�Bt�

dxdpj��x; p�ih��x; p�j; (2)

where j��x; p�i are minimal-uncertainty wave packets
localized at position x and momentum p, and D��� de-
notes the characteristic function of a region. In the limit
heff ! 0, the operator P t represents the characteristic
function of the region At. For finite heff , only the regions
Bt are well resolved by the wave packets. The operators
P t are defined with these smaller regions since this
guarantees idempotency up to small corrections due to
leakage. Hence, each P t projects onto some subspace Ht
of a dimension Mt�dimHt. This implies the representa-
tion P t � PtP

T
t , where the M-dimensional columns of Pt

are mutually orthogonal, P tPt0 � �tt0Pt. We also intro-
duce the complementary projector P �1�

P
tP t�

PPT .
Because of quantum-to-classical correspondence in the

regions Bt, the semiclassical dynamics propagates states
from subspace Ht to Ht�1 and finally to the opening,
where they are destroyed by Q:

QFQHt � Ht�1 �t > 1�; (3a)

QFQHt � f0g �t � 0; 1�: (3b)

Equation (3b) immediately exposes theM0 �M1 states in
H0 and H1 as quasibound states with eigenvalue �n � 0
(corresponding to instantaneous decay, �! 1). Does
this exhaust all short-lived states? In view of degeneracy
of the associated eigenvalue and the subunitarity ofQFQ,
this is by no means guaranteed. Indeed, Eqs. (3) naturally
lead to a partial Schur decomposition [20],

QFQ � UTUy;

8<
:
U � �P0; P1; . . . ; P�Ehr ; P�;

T � �
T11 T12
0 T22

�;
(4)

which reveals a much larger number of small eigenvalues.
The unitary matrix U leaves the eigenvalues invariant.
The structure of the blocks of T is obtained by consider-
ing the operation of QFQ on the columns in Pt.
Equation (3) implies that T11 is composed of sub-blocks
154102-2
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that connect each subspace Ht to Ht�1 (but not in the
opposite direction). Hence, this matrix is upper triangu-
lar and all the diagonal elements vanish. It follows that
the eigenvalue �n � 0 indeed has an algebraic multiplic-
ity [20] MEhr �

P
t<�EhrMt.

The difference between MEhr and M0 �M1 can be
traced back to the breakdown of the conditions for the
conventional Weyl law known for closed systems [21],
which assumes an orthogonal set of eigenvectors and
translates this into a uniform covering of phase space.
Perturbation theory shows that the small leakage out of
the subspaces in Eqs. (3) lifts the degeneracy of eigenval-
ues �n � 0, but the resulting MEhr eigenvectors are
almost-linearly dependent, with their major component
confined to the subspaces H0 and H1. The conventional
Weyl law would underestimate their number as M0 �
M1 � M�jB0j � jB1j�. The Schur decomposition care-
fully accounts for the admixture of the other subspaces
Ht with t � 2, and provides an orthonormalized basis
�P0; P1; . . . ; P�Ehr� for the short-lived states. Equipped
with such a basis, we now can formulate a new Weyl
law in analogy to the conventional case of closed systems:
The rank Mt of the characteristic projectors P t can be
estimated by the area covered by the regions Bt andMt �
MjBtj. A direct consequence is the estimate MEhr �
MjBj for the number of short-lived states.

Up to this point, our construction applies independent
of the nature of the classical dynamics, which may be
integrable, mixed, or chaotic. From now on we focus on
classically chaotic systems, which show a minimal
amount of system-specific details provided the dynamics
are ‘‘sufficiently ergodic’’ (�dwell�� 1). In parallel to the
considerations in Ref. [7,11], a typical area hjAt;iji �
��1
dwell exp��t�� shrinks exponentially with time t and

equates to the Planck cell heff �1=M at �Ehr�
1
� lnN.

The number of individual regions in Bt at given t is found
by balancing the exponential shrinking of areas with the
survival probability P�t����1

dwell exp��t=�dwell� for uni-
formly sampled starting points in phase space. The
probability density P�jAj� to initially reside in a region
of area jAj then takes the power law P�jAj� �
��1�jAj�dwell�

�1�1=��dwell . Collecting these results, the re-
gion of quantum-to-classical correspondence covers an
area jBj�1�exp���Ehr=�dwell�. We arrive at the esti-
mate

MEhr � M�1� exp���Ehr=�dwell�� (5)

of the number of instantaneous decay modes.
The complementary region B covers an area

jBj � exp���Ehr=�dwell� � N�1=��dwell : (6)

In this region we can expect fully developed wave chaos,
described by RMT with an effective matrix dimension

M � M�MEhr � MN�1=��dwell : (7)
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Finally, with the RMT prediction of Ref. [22], the number
of decay modes with �n smaller than a fixed value � <
1=�Ehr is estimated as

n� � M�1� ��1
dwell�1� e����1�: (8)

For fixed �dwell we obtain n� / hdeff , hence, a power-law
dependence on heff � 1=M with noninteger exponent d �
�1=��dwell� � 1. This is precisely of the form of the fractal
Weyl laws recently put forward by Lu et al. [6], who
formulated a trace formula for the long-lived quasibound
states associated to the classical repeller of a chaotic open
system (while we arrived at the result by constructing the
short-lived states).

We examine our predictions for a representative system
with ballistic openings, the open kicked rotator also used
in previous investigations [11,12,16] of the Ehrenfest
time. In the classical limit, the phase space of this system
is the torus �x; p� 2 �0; 1� � �0; 1� with periodic boundary
conditions. The phase-space density $t�1�x; p� �
QF �$t�x; p�� evolves in discrete time steps according
to the standard map F , specified by

xt�1 � xt � pt �
K
4%

sin2%xt�mod1�;

pt�1 � pt �
K
4%

�sin2%xt � sin2%xt�1��mod1�; (9)

which is followed by leakage in terms of a projection
operator Q that discards the density in a coordinate strip
�x; p� 2 A0 � �x0; x0 � 1=�dwell� � �0; 1�. For kicking
strength K * 7, the standard map displays well-
developed global chaos, characterized by a Lyapunov
exponent � � ln�K=2�. We fix K � 7:5, x0 � 0:2, and
�dwell � 5. The quantum dynamics takes place in a
Hilbert space of even integer dimension M, spanned by
a basis of discretized position states at x � m=M andm �
0; 1; . . . ;M� 1. The time-evolution operator is

Fmm0 �
1�������
iM

p e
i%
M�m

0�m�2�iMK
4% �cos2%mM �cos2%m

0

M �; (10)

and Q � diag�1N
N;ON
N;1�M�2N�
�M�2N��.
Husimi phase-space representations H�x; p� �

jh��x; p�j nij
2 of representative quasibound states for

M � 160 are shown in (b) through (f) of Fig. 1. The
short-lived states in panels (b) and (c) of Fig. 1 have major
components in the space H1 associated to the region A1,
and overlap in violation of the assumptions for the con-
ventional Weyl law. Long-lived states (d) and (e) of Fig. 1
show random, delocalized wave patterns. Exceptions are
a small number of long-lived trapped states, which are
localized in the region of slowest escape. For M � 160
only one such state exists, which is shown in Fig. 1(f).

Figure 2(a) shows the decay factors j�nj �
exp���n=2�, ordered by the decay rate �n (starting
with the long-lived states). The data covers a range
of inverse Planck’s constants between M � 80 and
154102-3
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FIG. 2 (color online). Ordered decay factors j�nj �
exp���n=2� of the open kicked rotator with M � 2m 
 80,
m � 0; . . . ; 8, and the other parameters as in Fig. 1(a), plotted
as a function of the relative index n=M [panel (a)] or of the
renormalized relative index n=M, where M is obtained from
Eq. (7) [panel (b)]. The solid curve is the RMT result [22]. The
dashed curve is this result with M fitted to the data.
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M � 20 480, and is presented as a function of the relative
index n=M. In accordance with the increasing area cov-
ered by the region B of quantum-to-classical correspon-
dence, the relative fraction of short-lived states increases
withM. Figure 2(b) shows the decay factors as a function
of the renormalized relative index n=M, with M esti-
mated from Eq. (7) and � � 1:32 approximated by the
Lyapunov exponent of the closed system. The collapse
onto one curve for all values of M confirms the predicted
scaling (5) of the number of short-lived states with the
Ehrenfest time.

Also shown in Fig. 2 is the result of RMT, obtained by
substituting the matrix F with a random matrix from the
circular orthogonal ensemble. The almost perfect agree-
ment found by fitting the effective matrix dimensionM to
the data [dashed curve in Fig. 2(b)] demonstrates that
effective RMT applies to a vast majority of the long-lived
states. Since the number of states n� is obtained by
inverting these curves, the collapse of the data onto the
effective RMT curve confirms the fractal Weyl law (8).

In summary, we identified instantaneous decay modes
(exceptionally short-lived quasibound states) in open bal-
listic quantum systems, which capitalize on escape routes
shorter than the Ehrenfest time. The large numbers in
which these states emerge in the semiclassical limit is
revealed only after a regularization of Weyl’s law, which
is required because of the almost-linear dependence of
these states. For chaotic classical dynamics, the remain-
ing long-lived states obey a RMT with an effective matrix
dimension complying to a fractal Weyl law, from which
one can conclude that such laws and the formation of
instantaneous decay modes are intimately related.
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