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Statistics of Defect-Mediated Turbulence Influenced by Noise
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The influence of white noise on defect-mediated turbulence which is modeled by the complex
Ginzburg-Landau equation is investigated. We show that the dynamics of defects in the noise-driven
spatiotemporal chaos can be described by a simple statistical model. The noise enhances significantly
the ability of the turbulent background to advocate new defects with a constant rate, and at the same
time it increases the vanishing of defects in the system by introducing an additional annihilation rate
that is proportional to the number of defects. A universal probability distribution function is derived for

the number of defect pairs.
DOI: 10.1103/PhysRevLett.93.154101

Noises often play nontrivial roles in nonlinear dynam-
ics, and their influence on low-dimensional systems has
been investigated extensively in the last 20 years [1-5].
Important examples include noise-induced transitions
and particularly the phenomenon of stochastic resonance.
In a more recent past, investigations of the effect of noise
have been extended to high-dimensional spatially distrib-
uted systems [4]. Much more fruitful and complicated
phenomena such as noise-induced fronts [6], phase tran-
sitions [7], noise-sustained or induced spatiotemporal
patterns [8], and spatiotemporal stochastic resonances
[9] were found. While most studies along this line have
been devoted exclusively to dynamical systems that ex-
hibit ordered patterns, the interplay between noise and
chaotic dynamics might be most interesting because they
represent, respectively, two distinct kinds of essentially
different irregularities. The noise is generated by genuine
stochastic processes; the randomness of chaos is, however,
of a pseudo kind and is deterministic in essence. The
effect of noise on low-dimensional chaos has been exten-
sively studied [10]; the interaction between noise and
high-dimensional spatiotemporal chaos has, however,
been seldom touched upon [11].

In this Letter, we report the effects of noise on an
important class of spatiotemporal chaos, i.e., defect-
mediated turbulence which is at the focus of experimental
and theoretical studies [12]. Defect turbulence has been
found to be abundant in systems such as autocatalytic
chemical reactions [13], fluid convection [14], cardiac
tissue [15], electroconvection in liquid crystals [16], non-
linear optics [17], Langmuir circulation in the oceans
[18], and so on. A striking feature of the dynamics in
these very different systems is that they can be charac-
terized by a hopefully universal description based only on
the defect dynamics. A first probabilistic model for
defect-mediated turbulence that describes fluctuations
of the number of defects was given by Gil et al [19].
They proposed a Poisson-like distribution for the number
of defects which was found to be quite general for oscil-
latory systems. The theoretical prediction has been
proved in the simulations of the complex Ginzburg-
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Landau equation (CGLE) [19] and experimentally in
electroconvection of nematic liquid crystals [16]. Recent
experiments of defect turbulence in inclined layer con-
vection also agree with the theoretical prediction when
boundary effects are taken into account [20]. The distri-
bution matches well with the most recent simulation
study of defect-mediated turbulence in media where the
underlying local dynamics is chaotic [21].

When external noises are introduced into defect-
mediated turbulence, the picture is anticipated to be
definitely changed due to the chaotic nature of turbulence.
Under appropriate intensity of noise, we find that the
noise enhances the fluctuation background to advocate
new defects with an additional rate which is independent
of the number of defect pairs, while at the same time it
induces an additional annihilation rate that is propor-
tional to defect pairs. We derive here a universal proba-
bility distribution function for defects.

We model in the following the defect-mediated turbu-
lence with CGLE [22], which is the prototype for oscil-
latory media, and introduce additively into CGLE a noise
term in the following form:

0A=A+ (1 +ia)V2A — (1 +iB)|AlPA
+ (1 +D)ér 1), (1

where &(r, ) is a Gaussian distributed stochastic real field
of white noise that has the property

(&(r, )&, 1)) = 2D6(t — 1)o(r — 1), 2

where D is the intensity of noise. Equation (1) does not
have a direct physical correspondence but represents rea-
sonably a theoretical model for investigating the interac-
tion between noise and spatiotemporal chaos. We simulate
Eq. (1) in a two-dimensional domain of size L X L
numerically using periodic boundary conditions.
Spatiotemporal chaos in CGLE has been studied exten-
sively [22,23], and we in the following fix a = 1.2, 8 =
—1.3 and focus our attention on the specific chaotic state
of defect-mediated turbulence in order to investigate the
effect of noise.
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A defect in the turbulent pattern corresponds to a local
position in the medium where the amplitude |A| = 0 and
the phase is undefined. It is characterized by its topologi-
cal charge defined by 5= §V(r,1)dl = m,, where
¢ (r, 1) is the local phase and the integral is calculated
along a closed curve surrounding the defect. The charge
my,p, takes typically +1 or —1. A defect is identified where
the contours Re(A) =0 and Im(A) = O intersect. The
number of defects in the turbulent pattern can be counted
as how many times the contours intersect in the whole
domain. When CGLE is free of noise (D = 0), the behav-
ior of defects can be considered as a Markov process [19].
The creation rate =, is independent of the current num-
ber of defects in the system, i.e., 2 (n) = C,, while the
annihilation E_ is proportional to the square of defect
pairs, E_(n) = Agn®. The probability distribution func-
tion for the number of defect pairs n is the squared-
Poisson distribution, P(n) = y"/[Io(,/¥)(n!)*] , where
v = Cy/Ay, and I is the Bessel function.

We turn on the noise and adjust noise intensity D. A not
too strong noise does not change the fundamental picture
of defect-mediated turbulence. In the noise-driven sys-
tem, the defects survive and turn up and wither away
spontaneously in the pattern. Figure 1(b) depicts a snap-
shot of the turbulent field with D = 0.01, which is similar
to the picture of Fig. 1(a) with D = 0. As D is increased to
a sufficiently strong intensity, the vortex in the turbulence
is ruined and the pattern is smeared as can be seen in
Fig. 1(c). Trajectories of topological defects show how the
noise affects the diffusion of defects. Figs. 1(d)-1(f)
demonstrate the defect paths over a short period of time
under different intensities of noise. In the case of weak
noise [Fig. 1(e)], the number of trajectories is increased by

FIG. 1. TImpact of white noise on defect-mediated turbulence
with different noise intensities. Gray-scaled plots of (a)—(c)
depict Re(A); (d)—(f) show trajectories of topological defects
over a period of 20 temporal units. Parameters are D = 0.0,
0.01, and 0.05 for (a),(d), (b),(e), and (c),(f), respectively.
Parameters are & = 1.2, 8 = —1.3, and domain size L = 100.
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an amount, but the paths are still regular and clear.
Blurred and irregular trajectories are induced when a
strong noise is applied [Fig. 1(f)].

For D = 0, topological defects are created and annihi-
lated strictly in pairs of opposite charge because the net
topological charge is conserved and equal to zero due to
periodic boundary conditions. This can be made more
clear by the contours that are used to locate the defects.
As shown in Fig. 2, the contours Re(A) = 0 and Im(A) =
0 are all closed curves (due to the periodic boundary
condition). As the pattern evolves, the contour lines are
constantly created and blow up. They continuously
change their shape, merge with each other, or shrink
and disappear. Every time the two types of contours
intersect or detach at a local position, a pair of two nearby
intersection points, which correspond to a pair of topo-
logical defects of opposite charge, is created or annihi-
lated. The number of the intersection points of contours is
always even, half of which are defects with m,, = +1
while the other half have charge m,, = —1. Defects of
opposite charges distribute alternately every other one
along the closed contours. In the presence of noise, the
contours are still closed curves (right panel, Fig. 2).
Therefore, even in the presence of noise, defects are
created or annihilated strictly by pairs. The noise has,
however, influenced the rates of defect creation and
annihilation.

The creation and annihilation rates as functions of
defect pairs are shown in Fig. 3. They are calculated by
counting the current defects and those created and that
vanish in a subsequent time unit and are then averaged
during the evolution. The creation of defects is still inde-
pendent of the number of defect pairs as in the noise free
case but has been increased significantly to a much higher
level [Fig. 3(a)]. The noise has therefore enhanced the
fluctuation background to advocate new defects with an
additional rate. The annihilation rate is also drastically
affected. Defects vanish with a much higher rate under
the impact of noise [Fig. 3(b)].

On the basis of the simulation results in Fig. 3, we can
extend the model given by Gil et al [19] in order to
describe the dynamics of defects in the presence of noise.

FIG. 2. Contours of Re(A) = 0 (solid line) and Im(A) =0
(dotted line) without (left panel) and with (right panel, D =
0.01) the influence of noise. The lines are closed curves when
periodic boundary is taken into account. Black dots are for
defects with charge +1, open circles for defects with charge
—1. Domain size L = 50.
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FIG. 3. Creation rates (a) and annihilation rates (b) of defects

as a function of defect pairs n with (black circle) and without
(open circle) the influence of noise. The solid lines in (a) and (b)
correspond to constant creation rates and annihilation rates
that are approximately proportional to quadratic polynomials,
respectively. Domain size L = 100.

We anticipate that the noise has increased the amount of
phase instability in the system which is responsible for
the creation of defects. The phase gradient under the
action of stochastic fluctuations of noise has led to a faster
pinching of the equiphases. The relaxation of the field
leads thereby to a faster creation of defects [Fig. 3(a)].
Notice that even though the defects are created in pairs,
the creation rate is not a proportion to the square of
defects. The noise can have influenced the detailed dy-
namic process of the contours in their creation, shape
distortion, merging, and vanishing. The annihilation of
defects can therefore be also influenced. Simulation re-
sults [Fig. 3(b)] indicate that the annihilation rate scales
approximately with quadratic polynomials. It is reason-
able to assume that the new creation rate =, (n) and the
new annihilation rate Z_(n) in the presence of noise
generally take the following forms:

E.(n)=Cy+C, (3)
2_(n) = Agn* + A'n, 4)

where the constant C’ and the linear term A’n are induced
by the noise. One sees that although defects are created
and annihilated both by pairs, the rates do not definitely
scale with n?. This suggests that topological defects in
defect-mediated turbulence probably cannot be consid-
ered as a ‘““defect gas” and cannot be described by a
chemical-like kinetics. The linear term assumed in
Eq. (4) is introduced on the base of numerical findings
[Fig. 3(b)], and the validity of Egs. (3) and (4) is further
justified by a close agreement between the subsequent
theoretical predictions and simulation data.

In the stationary state of detailed balance, the proba-
bility distribution P(n) for the number of defects satisfies
the master equation,

Py = Pn—1) 5
" in + n? " ’ )
where § = (Cy + C')/Ay, { = A'/A,. A simple recursion
manipulation leads to the following modified Poisson
distribution which has also been derived in [20] in a
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FIG. 4. Normalized distributions of simulation with D = 0.0
(square) and D = 0.01 (circle) with L = 100 and L = 200,
respectively. The dotted lines correspond to the squared-
Poisson distributions, while the full lines are the theoretical
prediction of Eq. (6) which agrees perfectly with the simulation
data. For L =200 and D = 0.01, we simulate (n) = 112,
(n?) = 12546.0, and a best fitting of Eq. (6) is achieved with
{ = 129.0 with 8 = 26942.4.

different circumstance
0n+{/2
CL,2VOT( + 1+ On!’

where I, is the modified Bessel function.

Figure 4 shows that the distribution of Eq. (6) matches
the simulation data very well, and the squared-Poisson
distribution has deviated significantly from the data.
When applying the modified Poisson distribution to fit
the simulation data, the relation 8 = /{n) + (n*) holds
and can be utilized. The distribution of Eq. (6) captures
also correctly the mean and variance of the simulation
data. Figure 5 shows good agreement between the model
(underlined characters) and the simulation result (regular
characters) when the intensity of the noise is tuned in the
range between D = 0.0 and D = 0.03. The squared-

P(n)
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FIG. 5. The variance o> = (n?) — (n)*> against the mean {n)
when intensity of noise D is adjusted between 0.0 and 0.03.
Results of Eq. (6) (underlined characters) are in close accor-
dance with the simulation data (regular characters). The italic
characters correspond to results of the squared-Poisson distri-
bution. The lines are to guide the eye.
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FIG. 6. (a) Influence of noise on diffusive property of defects.
{Ir(t = ty) — ro(ty)|) is calculated with trajectories of a bundle
of long-lived defects. The solid line has slope 0.38.
(b) Normalized distribution of lifetime of defects without
(solid line) and with (dotted line, D = 0.01) the influence of
noise.

Poisson distribution (italic characters) fails obviously in
the situation when defect-mediated turbulence is driven
by noise. As the noise intensity is increased, both the
creation and the annihilation rates grow monotonously.

We also checked the impact of noise on the diffusion of
defects. The quantity (|r(r — ty) — ro(ty)]), where ry is the
local position where a defect is created at 7, as function of
time is calculated and shown in Fig. 6(a). For Brownian
motion, this quantity grows proportional to t® with § =
1/2. The exponent 8 calculated in Fig. 6(a) is about 0.38,
which is less than 1/2 and is therefore subdiffusive.
Figure 6(b) depicts the probability distribution of defect
lifetime without and with the influence of noise. One sees
that the noise has decreased drastically the lifetimes of
defects.

To summarize, we have shown that the dynamics of
defects in defect-mediated turbulence driven by noise can
be described by a simple statistical model. The noise has
enhanced the ability of the turbulent background to create
defects with a constant rate while at the same time it
destroys the existing defects at a rate that is proportional
to defect pairs in the system. For defect-mediated spatio-
temporal chaos, researchers have proposed that the mac-
roscopic behavior of defect turbulence can be understood
by a simpler description of the dynamics of defects in-
stead of the original detailed partial different equations
[24]. A measure of the complexity of defect-mediated
turbulence was shown to be proportional to the average
number of defects in the system [25]. We demonstrated
here that even when defect chaos is driven by noise, the
complicated system can still be understood statistically
by taking into account the effect of noise on the creation
and annihilation of defects. Our results for the effects of
noise on defect turbulence and the probability distribution
function [Eq. (6)] for the number of defects should be
generic in oscillatory systems because the CGLE is ge-
neric and the defect-mediated spatiotemporal chaos it
describes represents a universal class of turbulence.
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