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We add an effective atom-centered nonlocal term to the exchange-correlation potential in order to
cure the lack of London dispersion forces in standard density functional theory. Calibration of this long-
range correction is performed using density functional perturbation theory and an arbitrary reference.
Without any prior assignment of types and structures of molecular fragments, our corrected general-
ized gradient approximation density functional theory calculations yield correct equilibrium geometries
and dissociation energies of argon-argon, benzene-benzene, graphite-graphite, and argon-benzene
complexes.
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London dispersion forces are crucial for many funda-
mental molecular processes such as the interactions be-
tween rare gas atoms, the formation of tertiary and
quaternary structures of biomolecules, the packing of
molecular crystals, and the intercalation of drugs into
DNA, to name only a few. These forces belong to the
group of weak long-range van der Waals (vdW) forces:
they represent the attractive interaction between self-
induced instantaneous dipole moments of ground state
electron distributions [1]. Despite their obvious impor-
tance, it is not yet generally possible to correctly describe
these nonlocal correlation effects within density func-
tional theory (DFT) calculations with purely local
exchange-correlation functionals [2–5]. Introduction of
nonlocality into a ‘‘vdW functional’’ as proposed in
Refs. [6,7] or by electron density partitioning [8] can
abolish this deficiency but usually implies the artificial
assignment of molecular fragments. Alternatively, Kohn
et al. [5] or Misquitta et al. [9] proposed a general scheme
for the calculation of dispersion forces with DFT but only
at prohibitive computational costs. As a consequence,
empirical atom-atom based correction terms of the
C6=R

6-type are frequently used instead [4,10]. Though
very successful in many cases [11], preliminary calcula-
tions and validations are necessary to determine the
values of these C6 coefficients. In addition, for each pair
of fragments or atom types individual damping functions
have to be identified to account for the correct repulsive
short-range behavior, rendering this approach somewhat
cumbersome. Furthermore, empirical atom-atom poten-
tials solely act on the ionic cores and do not influence the
electronic structure; i.e., they do not correct any elec-
tronic properties.

Here, we propose to construct an effective potential
consisting of optimized nonlocal higher angular momen-
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tum dependent terms for all atoms in the system in order
to compensate for the absence of dispersion forces in a
generalized gradient approximation (GGA) functional.
Thus, instead of approximating the attractive long-range
electron density correlation by an atom-atom interaction,
we model vdW forces by an atom-electron interaction,
mediated by appropriate nonlocal effective core potential
(ECP) projectors which are obtained from our optimiza-
tion scheme. We group this additional contribution to-
gether with the GGA exchange-correlation potential to
form an extended exchange-correlation potential, v̂extxc �
v̂GGAxc � v̂eff . For the calibration of the atom-projected
effective potentials, we use accurate large basis set second
order Møller-Plesset perturbation theory (MP2) results
for typical weakly bonded systems as a reference. To this
purpose, we have chosen molecular complexes which are
well known to be bonded solely due to dispersion forces.
We use the GGA functional of Becke, Lee, Yang, and Parr
(BLYP) [12,13], and MP2 as a reference. This is an
arbitrary choice; our approach could equally well be
applied in the context of any other exchange-correlation
functional and any other arbitrarily exact reference. In
this study, we consider references at the full MP2 level of
theory to be a reasonable compromise between accuracy
and computational cost. High accuracy methods like
coupled cluster theory or self-consistent field response
methods (e.g., coupled perturbed Hartree-Fock) are de-
sirable as benchmarks, but unfortunately, for larger sys-
tems, theoretical treatments beyond MP2 rapidly become
computationally intractable.

In electronic structure theory atomic ECPs represent
the potential of nuclei and their core electrons [14,15]. In
particular, DFT calculations using plane wave basis sets
are unfeasible without this technique. Initially intro-
duced in an empirical form in 1970 [16] and later in a
 2004 The American Physical Society 153004-1
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first-principles formulation [17], ECPs have been subject
to continuous development ever since [18]. Recently,
Goedecker et al. [19] published a library of analytic,
separable, norm conserving ab initio pseudopotentials,
which contain local and nonlocal, angular momentum
l dependent, terms of the form VECP�r; r0� � V�loc��r� �
��r� r0� �

P
lV

�nl�
l �r; r0�. Their local part consists of an

error function and a Gaussian while the nonlocal terms
consist of Gaussian-type radial projectors p for each
angular momentum channel l:

V�nl�
l �r; r0� �

X�l
m��l

Ylm�r̂�
X3
j;h�1

plh�r�hlhjplj�r0�Y�
lm�r̂

0�;

(1)

where plh�r� / rl�2�h�1� exp
�r2=�2r2l ��, r � jr�RIj on
the position R of nucleus I, r̂ is the unit vector in the
direction of r, and Ylm denotes a spherical harmonic. The
parameters f. . . ; hlhj; rl; . . .g of these pseudopotentials
(called f�ig in the following) are generated by iteratively
minimizing a penalty functional which expresses the
deviations of the Kohn-Sham (KS) pseudo-orbitals from
their all-electron counterparts.

The spirit of this generation procedure has motivated
us to design effective atom-centered potentials by con-
sidering not only atomic but also complex molecular
electronic properties as target quantities in the penalty
functional. In our approach an analogous iterative mini-
mization of a penalty functional (P ) is performed, where
P is designed in such a way that it penalizes deviations
from molecular properties (e.g., the electronic density)
with respect to experimental or theoretical references.

The penalty functional P �f�ig� may depend on all
quantities that can be expressed in terms of the KS
orbitals. It can thus describe any arbitrary molecular
property such as electronic densities n�r� and multipole
moments, as well as ionic forces FIons or energies.
Therefore, P depends only indirectly (i.e., via the KS
orbitals) on the ECP parameters f�ig.

In this way an additional effective potential can be
introduced that has formally the same form as the ion-
electron interaction potential, i.e., a linear combination of
atom-centered nonlocal potentials. It can thus be treated
with the usual computational machinery at negligible
additional cost. However, the number and magnitude of
all the parameters of this effective atom based nonlocal
potential are freely tunable; the potential, e.g., can be
chosen to act on a different characteristic length scale
than the localized electron-core interaction. Our approach
is therefore closely related to the optimized effective
potential (OEP) method in DFT [20–24] where an orbital
dependent external effective potential is optimized. In the
case that P is designed to minimize the total energy of
the system the scheme introduced here can be reduced
to OEP.
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We illustrate our procedure using a functional form
dependent only on the electronic density n�r� �PN
k�1 j�k�r�j

2, N being the number of the occupied KS
orbitals �k.

P 
n�r; f�ig�� �
Z
d3rw�r�F �n�r��; (2)

with a weighting function w and a penalty function F .
Equation (2) is minimized by following the gradient of P
with respect to the parameters �j:

dP
d�j

�
Z
d3rw�r�

@F
@n�r�

dn�r�
d�j

:

The derivatives dn�r�=d�j, which we denote n�1�j �r�, rep-
resent the linear response of the density induced by the
parameter variation �j � �j � d�j. This density re-
sponse can be computed through linear response theory,
where the perturbation Hamiltonian is given by the
change in the effective potential due to the variation in

�j: Ĥ
0
j � @V̂ECP�f�ig�=@�j. The density functional per-

turbation theory module [25] of the program CPMD [26]
can be used to determine the vector of response densities
fn�1�j �r�g. For all the DFT calculations presented in this
Letter, we used CPMD [26], a plane wave cutoff of 100 Ry.
The penalty function F and an appropriate weighting
function w [Eq. (2)] have to be chosen specifically for
each application. To obtain an attractive dispersion inter-
action, we choose the penalty functional in Eq. (2) to be a
sum of energy dependent and ionic force dependent terms
(both functionals of the electron density):

P disp�Rref� � jEref�Rref� � E�Rref�j2 �
XNions

I

wIjFI�Rref�j2;

where w�r� of Eq. (2) becomes
P

IwI��r�RI�, wI � 0 or
wI � 1 select specific atoms for the optimization process,
and FI and E are the ionic forces and the energy of
interaction at the reference geometry Rref , respectively.
Eref corresponds to the reference dispersion interaction
energy. By tuning the height (�1 � hl11) and the width
(�2) of an additional projector [pl1�r� / r2 exp�� r2=
�2�2

2��], we minimize P disp in such a way that the refer-
ence location and depth of the interaction energy mini-
mum are reproduced for the calibration system. The
choice to augment the ECPs by calibrating only one addi-
tional polarization channel is not crucial and could easily
be extended to other angular momentum channels.

As a test case, we have calibrated dispersion-optimized
effective potentials for carbon and argon. In the case of
(aromatic) carbon, we use as a reference system the
benzene dimer in its parallel sandwich configuration, as
presented in the left graph of Fig. 1, while for argon we
use the argon dimer (shown in the left graph of Fig. 2). For
153004-2
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FIG. 1. In the inset of the left graph the additional d-channel
projector p21�r� [Eq. (1)] is depicted in arbitrary units as a
function of r, the minimum is � 3:3 �A. Potential energy curves
of the total energy of interaction (Eint � EDimer � 2EMonomer)
are plotted as a function of the distance z. � corresponds to
normal ECPs, � to the optimized ECP (OECP), and � to MP2
data from [29]. The experimental value for the interlayer
distance and energy of interaction of two graphite sheets is
marked by a cross. The left hand panel shows the curve for
calibration. In atomic units the calibrated values of the addi-
tional d channel for carbon are �1 � �0:003 52 and �2 �
3:280. The other two graphs represent results for the T-shaped
configuration of benzene (middle panel) and for the slab of
graphite (right hand panel) using the same values �1, �2. In the
inset of the right hand panel the averaged interlayer distance z
is presented during first-principles BOMD using the normal
ECP (dotted line) and the OECPs (continuous line).

TABLE I. Calculated polarizabilities, quadrupole and dipole
moments for BLYP calculations with the unchanged ECPs, the
optimized ECPs (OECP), and MP2 calculations for compari-
son. bz represents benzene, and bz-Ar the benzene-argon com-
plex. All values are in atomic units.

Method �Ar Qbz
a ��bz

a �bz-Ar
a  zbz-Ar

ECP 12.30 �5:35 39.18 55.0 0.047
OECP 12.31 �5:50 38.45 58.1 0.035
MP2 11.15b �6:46b 35.07c 59.2b 0.037b

aQ � hz2 � 1
2 x

2 � 1
2 y

2i, ��bz � �bz
zz � �

bz
yy, �bz-Ar � �bz-Ar

zz .
bMP2 results from Ref. [27].
cMP2 results from Ref. [28].
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benzene wI was chosen to be zero in the case of hydrogen,
and one in the case of carbon, while for argon wI � 1.

The resulting values for �1 and �2 create a weak long-
range attractive potential. In the inset of the left graph of
Fig. 1 the applied additional projector for carbon p21�r� is
plotted against r. It is interesting to note that the mini-
mum of this attractive potential lies at 3.3 Åwhich is close
to the equilibrium separation. However, the magnitude �1

remained so small that, e.g., the geometry of an isolated
benzene monomer is not distorted (the average changes of
the bond lengths are only �0:01 �A). Moreover, electronic
quantities of the monomers remain basically unchanged,
e.g., the static polarizability (�) of argon or the quadru-
pole moment Q and the static polarizability anisotropy
(�� � �yy � �zz) of benzene (Table I).

Using the upgraded carbon ECPs, we computed inter-
action energies for a T-shaped benzene dimer configura-
tion and for a slab made of two layers of graphene. The
results are presented in Fig. 1 and show an astonishing
transferability of the calibrated ECPs. For the T-shaped
benzene dimer the results compare very well to the cor-
responding MP2 calculations from [29] which use the
same basis set as those we have used for the calibration
in the sandwich configuration. To compute graphite, we
arranged 64 atoms in a slab made of two layers, and
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applied periodic boundary conditions within the xy plane
of the graphite sheets. The system was isolated in the z
direction which is normal to the planes. For graphene
layers no MP2 data are available for comparison.
However, the calculated equilibrium distance of 3.3 Å
and interaction energy of 32 meV=atom are in surprising
agreement with the experimental interlayer distance and
the experimental energy of interaction between two gra-
phene sheets, 3.35 Å and 35� 10 meV=atom [30], respec-
tively. Using the same setup as for the graphene single
point calculations, we present results for 0.7 ps NVT
Born-Oppenheimer molecular dynamics (BOMD) at
300 K in Fig. 2. They confirm our findings that using
the upgraded ECPs the average distance between the
sheets is �3:3 �A while using normal ECPs the sheets
simply dissociate, as expected from the purely repulsive
interaction energy curve.

In order to extend the assessment of the transferability
to combinations of different atoms, we have investigated
the benzene-argon dimer. Without any further tuning of
the upgraded ECP parameters, we have computed the
potential energy curve for the benzene-argon dimer in
its C6v symmetry. The resulting curve is presented in
Fig. 2 and reproduces the equilibrium distance and inter-
action energy of corresponding MP2 calculations [27].
Also electronic properties such as the polarizability
(�bz-Ar) due to an electric field parallel to the C6v sym-
metry axis and the small permanent dipole moment
( zbz-Ar) induced by the mutual polarization of the mono-
mers show good agreement with MP2 predictions
(Table I). The inset of the right graph of Fig. 2 depicts
the difference of the electron density when upgraded
ECPs are used instead of conventional ECPs. The opti-
mized ECPs decrease electron density in the short-range
regions of the atoms and increase it in the outer core
regions, thus generating a small additional electron den-
sity overlap and thereby weak bonding.

All our results suggest that it is possible to correct for
the lack of electron correlation across low density regions
with dispersion-optimized atom based effective poten-
tials. We think that this scheme has advantages with
153004-3
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FIG. 2. For the argon-argon and the benzene-argon dimer
potential energy curves of the total energy of interaction
(Eint � EDimer � 2EMonomers) are plotted as a function of the
distance z. � corresponds to the normal ECPs, � to the
optimized ECP (OECP), and the MP2 results [27] for the
interlayer distances and energies of interaction are marked by
a cross. In atomic units the calibrated values of the additional f
channel for argon are �1 � �0:002 06 and �2 � 2:902. In the
inset of the right hand panel the C6v symmetry axis z is plotted
versus � �

R
dxdy
nnorm�r� � nopt�r�� (the differences between

integrated xy planes of the electron density of the benzene-
argon dimer at equilibrium distance computed with the normal
ECPs and the OECPs, respectively). The dotted lines show the
position of the moieties: benzene (the molecular plane is
perpendicular to z) is at 7.85 Å on the z axis, and argon is at
11.26 Å.
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respect to the usual empirical corrections for two reasons.
First, the improved electronic properties (dipole moment,
quadrupole moment, and polarizability) indicate that due
to the nonlocality of the ECP projectors, the valence wave
functions reproduce more of the characteristics of disper-
sion interactions than a simple additive atom-atom based
correction. Second, properly calibrated and transferable
atomic dispersion calibrated ECPs no longer need any
artificial a priori assignment of interacting groups or
atoms. Therefore, we have shown a possibility to gener-
ally include dispersion forces in all DFT first-principles
calculations at essentially no additional cost. We conclude
that our scheme to optimize effective external potentials
can be used to improve the description of molecular
properties within DFT. We have illustrated the potential
of our method by means of successfully modeling attrac-
tive long-range vdW forces within ECP based GGA DFT
calculations.
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