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Alternative Interpretation of Sharply Rising E0 Strengths in Transitional Regions
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It is shown that strong 0�2 ! 0�1 E0 transitions provide a clear signature of phase transitional
behavior in finite nuclei. Calculations using the interacting-boson approximation (IBA) show that these
transition strengths exhibit a dramatic and robust increase in spherical-deformed shape transition
regions, that this rise matches well the existing data, that the predictions of these E0 transitions remain
large in deformed nuclei, that they arise from the specific d-boson coherence in the wave functions, and
do not necessarily require the explicit mixing of normal and intruder configurations from different IBA
spaces.

DOI: 10.1103/PhysRevLett.93.152502 PACS numbers: 21.60.Ev, 21.10.Ky, 21.60.Fw, 27.60.+j
Phase transitions are a fundamental feature of many
physical systems and have recently been of considerable
interest [1–14]. One very active area has been the study of
shape changes at low energy in nuclei [6–13,15] which
have been described using catastrophe [6] and Landau
theory [13,15]. Such studies have focused on data and
model comparisons for energies, E2 transition matrix
elements, and quadrupole moments. There has been little
study of E0 matrix elements in shape transitional regions
despite the fact that the E0 operator and its transition
matrix elements should provide a fundamental measure of
how shapes and radii vary [16].

There have, of course, been some studies, most notably
in the context of the interacting-boson approximation
(IBA) [17] in the early work of Scholten et al. [18].
Their calculations for Sm isotopes provided anecdotal
(i.e., parameter-specific) evidence for an increase in E0
strength in deformed nuclei. Large values are also indi-
cated in analytic expressions for �2�E0; 0�2 ! 0�1 � values
in the O(6) and SU(3) limits [16,17,19,20]. Estep et al.
[21] used calculations from Ref. [22] in a shape coexis-
tence formalism [23] to predict �2�E0; 0�2 ! 0�1 � values
in the Mo isotopes (see below).

However, it is the purpose of this Letter to approach the
question of E0 transitions in transitional nuclei in a much
more general way, focusing on generic properties of
�2�E0� values. We will use a simple but general IBA
Hamiltonian of Ising-type that describes transitional re-
gions in terms of variations of a single control parameter
to span the full symmetry triangle of the IBA and will
display complete contours of these monopole transitions
that reveal robust, parameter-free characteristics of the
model. The most interesting behavior occurs precisely in
shape transition regions, namely, one finds a very sharp
increase in �2�E0; 0�2 ! 0�1 �, which then remains large
for well-deformed nuclei. We will show that, contrary to
common opinion, this characteristic behavior of 0�2 ! 0�1
E0 transition strengths does not require an explicit mix-
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ing of coexisting spherical and deformed intruder con-
figurations. Rather, it arises from a mixing of components
with different d-boson content, which is a natural ingre-
dient in the IBA when U(5) symmetry is broken and is
explicitly related to the deformation through the intrinsic
state formalism [17,24,25]. By analyzing the calculated
��E0� matrix elements in terms of contributions with
different nd values, we will show the key role of the
d-boson coherence in the wave functions and that, while
large nd values are a necessary condition for large �2

values, they are definitely not a sufficient condition.
Finally, while surprisingly little data exist on 0�2 ! 0�1
E0 transitions, much that do exist happen to be in shape
transitional regions, and we will see that the robust IBA
predictions agree with these data.

We start with a simple IBA-1 Hamiltonian [12] that
includes spherical and deformation-driving terms whose
competition determines the resulting structure,

H � a
�
�1� ��nd �

�
4N

Q �Q
�
; (1)

where Q � sy ~d� dys� ��dy ~d��2� with � 2 
�
���
7

p
=2; 0�.

For � � 0 one obtains the U(5) limit, while � � 1 and
� � �

���
7

p
=2 gives SU(3), and � � 1 and � � 0 gives

O(6). In general, there is a spherical-deformed first order
phase transition as a function of � (except for � � 0
where it is second order). The transition is most abrupt
for � � �

���
7

p
=2 and occurs at � � 0:5 for large N, and at

�  0:54 for typical boson numbers (N  10). The E0
transition operator is [16,18]

��E0� � ��sys��0� � ��dy ~d��0� � �N � �0�dy ~d��0�: (2)

The first term vanishes for transitions and the connection
to d-boson content is obvious.

The essential result is immediately clear from Fig. 1(a),
namely, that �2�E0; 0�2 ! 0�1 � rises dramatically just in
the shape transition region and remains large in deformed
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nuclei. This qualitative result is independent of boson
number and of �. That is, there is no trajectory from
spherical to deformed that avoids this increase. This is a
robust, parameter-free prediction of the model, inherent
to its structure.

These large E0 transitions in the IBA raise an impor-
tant side issue. The bosons correspond to correlated pairs
of nucleons in the valence space. Yet, microscopically, E0
transitions are forbidden in a single harmonic oscillator
shell [16]. However, realistic shell model descriptions
effectively entail mixing of several oscillator shells,
which is reflected in the use of effective charges in
calculations within restricted spaces. The IBA should
incorporate such effects.

The sharp drop in �2 for � ! 0 and � ! 1 [toward the
O(6) limit] in the plots of Fig. 1(a) occurs because of a
mixing and crossing of the 0�2 and 0�3 states. This is
illustrated for N � 10 in Fig. 1(b) (left). Comparison
with Fig. 1(a) shows that the 0�2 and 0�3 E0 strengths
interchange, and large 0�3 ! 0�1 transitions emerge and
persist into the O(6) limit where they are the allowed
transition from the � � �N � 2� 0� state [16,17]. If the
0�3 ! 0�1 and 0�2 ! 0�1 values are added, the contour plot
remains nearly constant after the phase transition region
[Fig. 1(b) (right)]. Other than this case, the only strong
ground state E0 transition is 0�2 ! 0�1 , although strong
transitions between pairs of excited 0� states abound.

In Fig. 2 we decompose the E0 strengths in terms of
individual components in the wave functions, showing,
for three � values (one before the transition, one near the
critical point, and � � 1 for a well-deformed rotor), the
contributions to ��E0; 0�2 ! 0�1 � from each nd value.
These are calculated from �2�nd��1�nd�nd, where
�1;2�nd� are the amplitudes in the 0�1 and 0�2 states with
nd bosons. In U(5), the 0�1 and 0�2 states have nd � 0 and
nd � 2, respectively, and hence, by orthogonality,
a

b

FIG. 1. (a) Contour plots of �2�E0; 0�2 ! 0�1 � throughout the
IBA parameter space for N � 4; 10; 16. The range of � values
implicit in the U(5) limit is explicitly shown along the left axis;
(b) Contour plots for N � 10, similar to the top panel, but for
�2�E0; 0�3 ! 0�1 � on the left and for the sum �2�E0; 0�2 !
0�1 � � �2�E0; 0�3 ! 0�1 � on the right.
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��E0; 0�2 ! 0�1 � � 0. With increasing U(5) symmetry
breaking as � ! 1, nd is no longer a good quantum
number. In fact, since 
h0�i>1jndj0

�
1 i

2 � hn2di � hndi2,
the total E0 strength is related to the spreading (fluctua-
tions) of nd in the ground state. As higher nd components
grow [12,17], so do their contributions to �2. Such
d-boson mixing is inherently related to the onset of
quadrupole deformation [17,24–26].

Before the phase transition the � values are dominated
by coherent nd � 2, 3, and 4 components. After the phase
transition subtle positive and negative cancellations ap-
pear. Higher nd components are essential to the final sum
over 
�1�nd��2�nd�nd. While finite d-boson amplitudes
are clearly a necessary condition for both deformation
and � values, large � values are not merely a trivial
consequence of large hndi values. The many small
��E0; 0�i ! 0�j � values prove this. This is illustrated in
the last panel of Fig. 2, which clearly shows the cancella-
tions that give small � values for weak E0 transitions.
Rather, it is the specific d-boson coherence in the wave
functions that controls the resultant � values.

While the focus here is on 0�i ! 0�1 transitions, we
briefly comment on the behavior for higher spin.
Calculations such as those in Fig. 1 show similar behavior
if the �2 strengths are summed over all initial states.
However, there is more fragmentation. Empirically,
Ref. [16] lists a number of strong E0 transitions to the
first 2� state and there seems to be enhanced fragmenta-
tion as well.

The robust predictions of �2�E0; 0�2 ! 0�1 � demand
experimental testing. E0 0�2 ! 0�1 transitions are known
[16] in both the A � 100 and 150 transition regions.
Figure 3 compares these data with a schematic IBA
calculation. The data are plotted at � values where the
calculations reproduce the experimental R4=2 values.
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FIG. 2. Decomposition of the ��E0� amplitudes as a function
of nd for the 0�2 ! 0�1 transition for � � 0:35; 0:54 (near the
critical point) and � � 1, and for 0�3 ! 0�1 for � � 1 at lower
right, for N � 10, � � �

���
7

p
=2. Open bars are amplitudes for a

given nd and solid bars are the running sum from nd � 0 up to
the given nd value.
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Despite the restriction to fixed �, N, and �0, and that �
was chosen simply by fitting two yrast energies, these
calculations clearly reproduce the sharp rise in �2�E0�
values.

These results raise an important question relating to
phase transitional behavior. Microscopically, the
Federman-Pittel mechanism [27], which invokes strong
p-n interactions [28], leads to single particle energy shifts
(via the monopole component [29]) and to the descent of a
coexisting deformed configuration in otherwise spherical
nuclei. An equilibrium deformation ensues when this
configuration becomes the ground state. In the IBA, this
coexistence can be explicitly included by the Duval-
Barrett formalism [23] in which a pair of nucleons (pro-
tons in this case) is excited across a shell or subshell gap
to form a space with N�def

� N�sph
� 2 (counting the extra

pairs of holes and particles as additional bosons); thus
H � HNB

�HNB�2
�Hmix. Typical Duval-Barrett calcu-

lations involve many parameters— two or more for each
term in H. The calculations of Ref. [22] used 13 parame-
ters but reproduce the experimental �2�E0; 0�2 ! 0�1 �
values (see Fig. 3) in Mo rather well.

The interesting point is that, while the large �2 values
in these calculations have been ascribed [21] to the mix-
ing, that is, to a nonvanishing Hmix, it is evident from
Figs. 1 and 3 that large values of �2�E0; 0�2 ! 0�1 � also
occur in the IBA without the need to introduce such
mixing.

How can these seemingly conflicting results be recon-
ciled? Figure 5 of Ref. [22] shows the probabilities of
N��1 and N��3 components in the ground state wave
functions (and, by orthogonality, the approximate admix-
tures for the 0�2 states). In Mo nuclei, there is, in fact,
little mixing ( < 10%) for A � 96 (spherical) and even
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FIG. 3. Empirical �2�E0; 0�2 ! 0�1 � values (from Ref. [16])
for nuclei in the A � 100 and 150 transition regions and
schematic IBA-1 calculations. (As such schematic calculations
cannot give R4=2 < 2, nuclei such as 98Mo are not considered.)
The solid curve is the IBA prediction for N � 10 with � �
�

���
7

p
=2 and �0 � 6� 10�3=eR2

0 [Eq. (2)]. The inset shows how
R4=2 itself behaves with �: note the similarity to the �2�E0�
trajectory. Data points are labeled with mass number A.
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less ( < 5%) for A � 102; 104 (deformed). Only for A �
98; 100 is there substantial mixing. Thus, these Duval-
Barrett calculations effectively go over into the simple
(single space) IBA results before and after the transition
region. It is therefore not the large �2 value for A � 102
that requires mixing. It is rather the moderate �2 values
for the predeformed transitional Mo isotopes with A �
98; 100. This interpretation is validated by other observ-
ables. In 96Mo54,

98Mo56, the experimental values of the
ratios B�E2; 0�2 ! 2�1 �=B�E2; 2

�
1 ! 0�1 � and B�E2; 2�2 !

2�1 �=B�E2; 2
�
1 ! 0�1 � exceed any predictions of standard

models, including the vibrator and rotor. The reason is
that the 0�1 state primarily consists of N bosons, while the
2�1 , 0�2 , and 2�2 states belong primarily to the N � 2 space
[22]. Hence, the denominators are hindered. It requires
the Duval-Barrett formalism with parametrized Hmix to
account for these data.

The key point here is that large �2�E0; 0�2 ! 0�1 � val-
ues in transitional nuclei can arise in two ways, either
from mixing of coexisting spherical and intruder con-
figurations (as shown in Ref. [20]) originating in different
spaces (see Ref. [30]) or, alternately, from the simpler
IBA-1 itself. Thus, contrary to many statements in the
literature, strong spherical-intruder state mixing is not
required for large �2�E0� values, nor are large experi-
mental �2�E0� values in transitional nuclei necessarily a
signature of such mixing effects. One must analyze each
region to determine whether to explicitly introduce shape
mixing or whether the simple, few-parameter IBA alone
suffices. In the Mo region, Ref. [22] shows that mixing of
shape coexisting states is essential for the predeformed
nuclei. However, in the first deformed nuclei in both the
mass 100 (98Sr, 100Zr, 102Mo) and 150 (152Sm, 154Gd)
regions some of the largest known �2�E0� values are
easily accounted for without such mixing by the IBA-1.

We commented above that E0 transitions vanish in a
single oscillator shell. It is therefore of interest to study
how a valence space model such as the IBA, in which the
bosons are considered to be formed from nucleons in the
first open shell beyond an inert doubly magic core, can
produce large E0 strengths. Of course, E0 transitions can
arise by coupling to the giant monopole resonance, but
this would seem to be outside the IBA space. Rather, the
E0 transitions in the IBA may reflect the fact that realistic
major shells in the independent particle model include an
intruder orbit from the next higher shell, and that addi-
tional intruder orbits, from both lower and higher shells,
appear in the Nilsson scheme with increasing deforma-
tion, that is, as the phase transition proceeds. Of course, as
a phenomenological model, one cannot relate the IBA
directly to such a picture without detailed microscopic
analysis, but it may be that the importance of intruder
orbits is reflected in the effective parameter, �0, in the E0
operator. Remarkably, the use of a simple one-body op-
erator with constant coefficients is sufficient for reproduc-
152502-3
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ing the trends of the data in transition regions. Given the
empirical success shown here for the simple IBA inter-
pretation of E0 transitions, microscopic studies are
strongly encouraged.

Last, one upshot of this study concerns well-deformed
nuclei. The only �2�E0; 0�2 ! 0�1 � values known in the
deformed rare earth nuclei are very small values (�2 
2� 10�3) in 166Er and 172Yb, in contrast to the IBA
predictions. However, the empirical 0�2 states may not
correspond to the 0�2 states of the IBA, but could have
two-quasi-particle character. Interestingly, in the neigh-
boring nucleus 170Yb, there is a rather strong E0 transition
[�2 � 27�5� � 10�3] from the 0�3 state to the ground state.
It is also interesting that there are a number of large
�2�E0; 2�i ! 2�1 � values known for deformed nuclei
[16]. Moreover, in recent IBA calculations [31], anoma-
lous kinks in the parameter systematics are avoided if the
empirical 0�3 state is associated with the 0�2 IBA state
near A � 170. Clearly, it is important to measure 0�i !
0�1 E0 transitions in a number of deformed nuclei to see if
the total E0 strength predicted in the IBA is recovered.

To summarize, experimentally, �2�E0; 0�2 ! 0�1 � val-
ues rise dramatically in shape/phase spherical-deformed
transition regions. We have presented here an alternative
view in which this rise, and large E0 transitions in
deformed nuclei, arise not from mixing of coexisting
spherical and deformed configurations, although such a
mechanism may contribute as well in specific instances
(e.g., 98;100Mo), but rather from � deformation and its
variation in the transition region. This result is directly
connected to the physics of phase transitional regions
since calculations within a single space reproduce the
characteristic increase in E0 transition strengths. That
is, by using the IBA-1 model we showed that contrary
to common opinion the rise in �2�E0� values is predicted
even by this simple, single space model, agrees with the
data, is parameter-free and intrinsic to the model, does
not require the mixing of different IBA spaces, and devel-
ops due to the specific d-boson coherence in the wave
functions. In the IBA-1 the E0 strengths are directly
related to the fluctuations (spreading) in nd values, and
therefore to the � deformation. Finally, we have proposed
a direct test of these ideas through the measurement of E0
transitions to the ground state in well-deformed nuclei.
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