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Perturbative Generation of a Strange-Quark Asymmetry in the Nucleon
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We point out that perturbative evolution in QCD at three loops generates a strange-antistrange
asymmetry s�x� � �s�x� in the nucleon’s sea just from the fact that the nucleon has nonvanishing up and
down quark valence densities. The recently computed three-loop splitting functions allow for an
estimate of this effect. We find that a fairly sizable asymmetry may be generated. Results for analogous
asymmetries in the heavy-quark sector are also presented.
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Strange quarks and antiquarks play a fundamental role
in the structure of the nucleon [1]. Among the various
strangeness-related properties of the nucleon, the strange
‘‘asymmetry,’’ s�x� � �s�x�, in the number densities of
strange quarks and antiquarks, x being the light-cone
momentum fraction they carry, is of particular interest.
Since the nucleon does not carry any strangeness quan-
tum number, the integral of the asymmetry over all
values of x has to vanish:

hs� �si �
Z 1

0
dx�s�x� � �s�x�� � 0: (1)

However, there is no symmetry that would prevent the
x dependences of functions s�x� and �s�x� from being dif-
ferent. One therefore can expect s�x� � �s�x�, in general.

To understand and quantify the strangeness asymmetry
in the nucleon is interesting in different contexts. Some
models of nucleon structure make predictions [2] for
s�x� � �s�x�, and their confrontation with experimental
measurements may perhaps give us further insight into
nonperturbative dynamics of the strong interactions. For
example, within the meson cloud model [2], one usually
expects s�x� to be larger than �s�x� at large x, implying the
opposite behavior at small x. Light-cone models [2], on
the other hand, generically predict s�x� � �s�x�< 0 at
large x. The various models mostly predict a fairly small
value of the second moment of the strange-antistrange
distribution, jhx�s� �s�ij 
 10�4.

As was emphasized in [3,4], the question concern-
ing the strange asymmetry in the nucleon becomes par-
ticularly relevant in view of the ‘‘anomaly’’ seen by the
NuTeV Collaboration in their measurement of the
Weinberg angle in deeply inelastic neutrino scatter-
ing. The NuTeV result [5], sin2�WjNuTeV � 0:2277 �

0:0013�stat:� � 0:0009�sys:�, deviates around 3 standard de-
viations from the commonly accepted value sin2�W �
0:2228� 0:0004 [6]. This large difference could be at
least partly explained [3,4] by a positive value of hx�s�
�s�i. Typically, a value hx�s� �s�i � 0:005 would be re-
0031-9007=04=93(15)=152003(4)$22.50 
quired if one wanted to attribute the NuTeV anomaly to
the strange asymmetry alone.

The NuTeV Collaboration has determined the second
moment hx�s� �s�i from a lowest-order QCD analysis of
neutrino data [7] and finds a negative value [8]:

hx�s� �s�i � �0:0027� 0:0013: (2)

Such a value increases the discrepancy in sin2�W to a 3:7�
effect. The second moment had also been investigated in
‘‘global analyses’’ of unpolarized parton distributions.
Reference [9] reported an improvement in the global
analysis if the asymmetry s�x� � �s�x� is positive at high
x. They found hx�s� �s�i � 0:002� 0:0028 at Q2 �
20 GeV2 from their best fit. A recent update of this
analysis [10], however, reduces the asymmetry signifi-
cantly. The most recent global QCD fit [11] finds a large
uncertainty for the strange asymmetry and quotes a range
�0:001< hx�s� �s�i< 0:004.

The discussion reported so far regards strange-
antistrange asymmetries that are generated by nonpertur-
bative mechanisms. Then, because of the customary scal-
ing violation, the asymmetry becomes dependent on the
hard-scattering scale Q at which the nucleon is probed. In
this Letter, we point out that perturbative QCD alone
definitely predicts a nonvanishing andQ-dependent value
of the strange-antistrange asymmetry. We show that non-
singlet evolution of the parton densities at three loops
generates a strange asymmetry even if it is not present at
the input scale. Thus, we can provide a prediction for the
strange asymmetry s�x� � �s�x� based solely on perturba-
tive QCD. The effect arises because at that order of
perturbation theory the probability of a splitting q! q0

becomes different from that of q! �q0 and because the
nucleon has u and d valence densities. The three-loop
splitting functions have very recently been published
[12,13], among them the splitting function needed for
our perturbative estimate of s�x� � �s�x�. To begin with,
we write down the evolution equations and determine the
solution for the generated strange asymmetry. We then
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present some numerical results for the strange asymmetry
and extend the analysis to the heavy-quark sector.

It is convenient to write the evolution equations in
Mellin space, becoming simply (with a � qi; �qi; g)

dfNa �Q2�

d lnQ2
�

X
b

PNab��S�Q2��fNb �Q
2�: (3)

In the following we drop the dependence on the moment
index N for simplicity. In Eq. (3) Pab is the function
describing the splitting b! a. The splitting functions
are perturbative; their perturbative series starts at O��S�:

Pab �
�
�S

4�

�
P�0�
ab �

�
�S

4�

�
2
P�1�
ab �

�
�S

4�

�
3
P�2�
ab �O��4

S�:

Keeping just the first term yields the leading order (LO)
evolution. Improving the approximation by taking into
account also the second, or the second and third, terms
corresponds to next-to-leading order (NLO) and next-to-
next-to-leading order (NNLO) evolution, respectively.

Since s�x� � �s�x� is a flavor nonsinglet (NS) quantity,
we need to consider only the NS sector of evolution. We
write the evolution kernels Pab by adopting the notation
of Ref. [12]. Because of charge conjugation invariance
and flavor symmetry of QCD, one has (see, e.g., Ref. [14])

Pqiqk � P �qi �qk � �ikPVqq � PSqq;

Pqi �qk � P �qiqk � �ikP
V
q �q � PSq �q:

(4)

The splitting functions PSqq and PSq �q thus describe split-
tings in which the flavor of the quark changes. As will
become clear, the effect we investigate originates from
the fact that PSqq � PSq �q starting from NNLO [14,15].

In the flavor NS sector the evolution equations (3) are
diagonalized by properly introducing NS combinations of
parton densities. Up to NLO it is sufficient to consider
two NS combinations. Owing to the difference between
PSqq and PSq �q, starting from NNLO it is necessary [15] to
introduce the following three NS combinations:

f�V� �
XNf
i�1

�fqi � f �qi�;

f���
qi � fqi � f �qi �

1

Nf

XNf
j�1

�fqj � f �qj�;

(5)

whereNf is the number of flavors. Each of these evolves as

d lnf�A��Q2�

d lnQ2
� P�A���S�Q2��; �A � V;��; (6)

where the evolution kernels are

P�V� � PVqq � PVq �q � Nf�PSqq � PSq �q�;

P��� � PVqq � PVq �q:

The equations have the solutions

f�A��Q2� � U�A��Q;Q0�f�A��Q2
0�; (7)

where f�A��Q2
0� is the parton density at the starting scale
152003-2
Q0 and the evolution operator U�A� is given by

U�A��Q;Q0� � exp
�Z Q2

Q2
0

dq2

q2
P�A���S�q2��

�
: (8)

Using Eq. (7) with A � � and A � V, we have

�fqi � f �qi��Q
2� � U����Q;Q0��fqi � f �qi��Q

2
0�

�
1

Nf
�U�V��Q;Q0�

�U����Q;Q0��f�V��Q2
0�: (9)

Equation (9) is the basic result in our discussion of
flavor asymmetries. The key point is that Eq. (9) implies
that, in the region of Q2 where QCD perturbation theory
is applicable, the flavor asymmetries �fqi � f �qi��x;Q

2�

must necessarily be different from zero. This is a definite,
though qualitative, prediction of perturbative QCD.

In the following we simplify the notation, using fqi �
qi and f �qi � �qi, and we consider in detail the strange-
quark asymmetry, s� �s. Equation (9) gives

�s� �s��Q2� � U����Q;Q0�

�
�s� �s��Q2

0� �
1

Nf

�

�
U�V��Q;Q0�

U����Q;Q0�
� 1

�
f�V��Q2

0�

�
: (10)

At LO and NLO, U�V� � U���, and thus any strange-
quark asymmetry can be produced only by a correspond-
ing asymmetry at the input scale Q0 of the evolution.
From NNLO, the degeneracy of P�V� and P��� is removed:

P�V� � P��� � Nf�PSqq � PSq �q� �
�
�S

4�

�
3
P�2�S
ns �O��4

S�;

(11)

where P�2�S
ns has recently been presented in Ref. [12]. It

comes with the color structure dabcdabc, which is also new
at this order. In a physical gauge, the Feynman diagrams
contributing to P�2�S

ns are of the ‘‘light-by-light’’ scattering
type, three gluons connecting the two different quark
lines. Figure 1 shows some examples of (interferences
of) (a) virtual and (b) real diagrams that generate the
asymmetry in the evolution of quarks and antiquarks. The
virtual part [e.g., Fig. 1(a)] has separately been studied
[16] in the context of its contribution to the one-loop
triple collinear splitting function. When the quark qj is
replaced by the antiquark �qj, the Abelian-like part of the
diagrams in Fig. 1 changes sign, because of the charge
asymmetry produced by the exchange of three gluons in
the t channel. This effect occurs in both QCD and QED,
and it is a genuine quantum phenomenon.

On account of Eq. (10), even if �s� �s��Q2
0� � 0, a

nonvanishing strange-quark asymmetry is produced just
by the perturbative QCD evolution. Here it is crucial that
the total valence density of the nucleon, f�V�, is non-
vanishing due to the up and down valence quarks. Using
Eqs. (8) and (11) we have, in moment space,
152003-2
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FIG. 2. (a) Strange asymmetry in the nucleon from NNLO
QCD evolution for Q2 � 2, 10, and 100 GeV2; (b) the corre-
sponding ratio to the LO strange density of Ref. [18].
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FIG. 1. Example of (a) virtual and (b) real contributions to
P�2�S
ns .
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U�V��Q;Q0�

U����Q;Q0�
� 1 � �

1

8�b0
P�2�S
ns

��
�S�Q2�

4�

�
2

�

�
�S�Q2

0�

4�

�
2
�
�O�N3LO�; (12)

where b0 �
1

12� �11CA � 2Nf�. Note that despite being a
NNLO effect, the perturbative generation of s� �s is a
leading effect since it first occurs at this order. Under the
assumption �s� �s��Q2

0� � 0, and neglecting heavy-quark
(valence) contributions and threshold effects, the solution
for the evolution equation for the strange-quark asym-
metry reads to NNLO:

�s� �s�N�Q2� ’ �
P�2�S
ns;N

8�b0Nf

��
�S�Q

2�

4�

�
2
�

�
�S�Q

2
0�

4�

�
2
�

��u�V� �d�V��N�Q
2�; (13)

where we have restored the Mellin moment index N. Here
we have used that U���

N �Q;Q0� simply evolves the valence
input, u�V� � u� �u and d�V� � d� �d, to the scale Q at
LO. Assuming isospin symmetry, the sum of valence
distributions is the same in the proton and the neutron
and, consequently, also the perturbative strange
asymmetry.

From Eq. (13) we can straightforwardly obtain predic-
tions for �s� �s��x;Q2� by a numerical Mellin inversion,
once we have chosen an initial scale and input valence
densities. For our estimates we employ the low input scale
Q0 � 0:51 GeV and the u; d valence densities of the LO
‘‘radiative’’ parton model analysis of Ref. [17]. Threshold
effects at Q � mc � 1:4 GeV and Q � mb � 4:5 GeV
are taken into account by the full implementation of
Eq. (10). Since we are considering a leading effect, the
LO approximations are appropriate. The value for the
initial scale is of course crucial for our results; the lower
the scale, the larger will the perturbatively generated
strange asymmetry be at a given higher scale Q. Our
choice of a rather low input scale may be regarded as
yielding the largest possible perturbative strange asym-
metry. Whether or not it is indeed correct to assume that
the nucleon is symmetric in s and �s at a low scale is an
open question; however, our motivation is to explore the
new effect provided by three-loop evolution. We note that
our input assumption �s� �s��x;Q2

0� is consistent with the
input in Ref. [17], where actually s�x;Q2

0� � �s�x;Q2
0� � 0

was assumed, resulting in a purely generated (symmetric)
strange distribution which agrees reasonably well with
the ones obtained in other global analyses.
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Figure 2(a) shows �s� �s��x;Q2� as a function of x, for
three different scales, Q2 � 2, 10, and 100 GeV2. For
comparison, Fig. 2(b) shows the ratio of �s� �s��x;Q2�
to the Martin-Roberts-Stirling-Thorne (MRST) [18]
strange density s�x;Q2�. The generated asymmetry is
not negligible and turns out to be positive at small x
and negative at large x. Since the distribution has a
vanishing first moment and only one node, a negative
second moment results:

hx�s� �s�i � �5� 10�4 �Q2 � 20 GeV2�: (14)

This value depends fairly little on Q2 once Q2 > 1 GeV2;
it then very gently decreases at large Q2. As expected for
a NNLO effect, it is quite small, somewhat smaller than
the NuTeV value in Eq. (2). We note that our value lies in
the band derived from a global analysis in Ref. [11].

Let us now try to put the size of the perturbatively gen-
erated strange asymmetry into a better perspective. As
we discussed above, the effect becomes possible for the
first time at NNLO, where P�2�S

ns � 0. This is reminiscent
of a well-known effect that first arises in NLO evolution,
namely, the perturbative generation of � �u� �d��x� � 0

from evolution, due to P�V�
q �q � 0 at NLO [19]. Interest-

ingly, despite being a NNLO effect, we found our �s�
�s��x;Q2� to be larger than the NLO perturbative � �u�
�d��x;Q2� in most of the x region, in particular, at small x
where the splitting function P�2�S

ns is singular as ln4x. Also,
for the perturbative �u� �d the difference �u�V� � d�V���
�x;Q2

0� of input valence densities determines the bound-
ary condition, whereas for s� �s it is their sum, according
to Eq. (13). From this point of view, the perturbatively
generated �s� �s��x;Q2� can actually be considered as
quite large. Of course, as is well known, a much larger
�u� �d asymmetry than the perturbatively predicted one
has been measured [20–24], which implies that nonper-
turbative effects outweigh the asymmetry from pertur-
bative evolution. It is clearly possible that also in the case
of s� �s nonperturbative effects dominate. It is worth
152003-3
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FIG. 3. (a) Ratios between the purely pertubatively generated
charm and bottom densities at Q2 � 100 GeV2 to the corre-
sponding density of Ref. [18]; (b) charm and bottom asymme-
tries in the nucleon generated from NNLO QCD evolution.
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pointing out that the uncertainties in the perturbative
strange asymmetry itself are difficult to quantify since
it is effectively a LO effect. On the other hand, as we
mentioned in the introduction, models of nucleon struc-
ture generally predict a very small strange asymmetry,
the second moment usually being several times smaller
than ours in Eq. (14). Therefore, at the very least, we ex-
pect perturbative evolution to play a significant role in re-
lating model predictions at the (low) model scale to s� �s
at scales relevant for comparison to experimental data.We
also note that the large-x behavior of our perturbatively
generated strange asymmetry is driven by that of the
evolved valence densities and of the splitting function
P�2�S
ns �x�. As x! 1, one expects from perturbative QCD

�s� �s��x;Q2� 
 �1� x�2 ln�1� x��u�V� � d�V���x;Q2�:

This may well be the dominant behavior at high x, even in
the presence of a nonperturbative input for s� �s.

We finally note that our analysis may also be extended
to predict the asymmetries for heavy flavors c and b.
Here, the perturbative prediction may be more reliable
since one will typically start the evolution from the mass
of the heavy quark, which is in the perturbative region.
Assuming that the charm and bottom densities vanish at
the respective masses, we find the results shown in Fig. 3.
Plot (a) compares the purely perturbatively generated
charm and bottom densities to the results of the latest
MRST LO analysis [18]. The agreement found at scales
far away from the threshold for heavy-quark production,
and in the relevant small x range, is a signal of the
validity of the approach. One expects a similar situation
to hold for the asymmetry. Plot (b) corresponds to the
ratio between the generated asymmetry and the corre-
sponding heavy-quark density. Note that for the last result
we only assume that the heavy-flavor asymmetries vanish
at the respective masses. This is a weaker assumption than
that there be no initial heavy-quark distributions at all at
these scales. As can be observed, the asymmetries are
smaller than in the strange sector, mostly due to the larger
initial scale at which the evolution begins.
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