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Nonrelativistic QED Approach to the Bound-Electron g Factor
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Within a systematic approach based on nonrelativistic quantum electrodynamics, we derive the one-
loop self-energy correction of order ��Z��4 to the bound-electron g factor. In combination with
numerical data, this analytic result improves theoretical predictions for the self-energy correction for
carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the
logarithmic two-loop contribution of order �2�Z��4 ln��Z���2� and the dominant part of the corre-
sponding constant term. The results obtained improve the accuracy of the theoretical predictions for the
1S bound-electron g factor and influence the value of the electron mass determined from g-factor
measurements.
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There has been significant progress in experimental
investigations of the bound-electron g factor during re-
cent years [1,2]. The g-factor value in these measurements
is obtained from the ratio of the electronic Larmor pre-
cession frequency !L and the cyclotron frequency of the
ion in the trap !c, according to
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where e is the elementary charge, q is the charge of the
ion, mion is the ion mass, and m is the electron mass. The
present accuracy of the experimental results for carbon
and oxygen is already below the 1 part per billion level
and is likely to be improved in the near future. In order to
match the experimental precision, accurate calculations
of the one-loop self-energy [3–6], vacuum-polarization
[4,7], and nuclear-recoil [8,9] corrections have been per-
formed during the last decade. An important result of
these studies is the possibility to extract the electron
mass from the experimental value for !L=!c according
to Eq. (1). Such a determination was presented in
Refs. [2,5,10] based on the experimental result for
H-like carbon and oxygen. It provided an improvement
of the accuracy of the electron mass by a factor of 4, as
compared to the previous value based on measurements
involving protons and electrons in Penning traps [11]. As
a result, the present recommended value for the electron
mass [12] is derived mainly from the bound-electron
g factor.

The current uncertainty of the theoretical values for
the g factor in H-like carbon and oxygen originates
predominately from the two-loop binding QED correc-
tion. This correction is presently known [13] only to its
leading order in Z�, namely �2�Z��2, the corresponding
contribution being of pure kinematical origin. The next
correction enters in order �2�Z��4 and results from non-
trivial two-loop binding QED effects that have not been
addressed theoretically up to now.
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The goal of the present investigation is to formulate an
approach for the systematic derivation of higher-order
QED corrections to the g factor of a bound electron.
Applicability of this approach is demonstrated for the
one-loop self-energy correction, for which direct numeri-
cal calculations to all orders in Z� are available. The
analytical contribution derived here is used in order to
reduce the uncertainty of the numerical results for carbon
and oxygen by an order of magnitude. The developed
method is then applied to the evaluation of the two-loop
self-energy correction. We derive the complete result for
the logarithmic contribution of order �2�Z��4 ln��Z���2�
and a large part of the corresponding constant term. The
results obtained improve the accuracy of the theoretical
values for the 1S bound-electron g factor in carbon and
oxygen and influence the electron-mass determination
derived from the corresponding experimental results.

The computational approach is based on the Dirac-
Coulomb Hamiltonian that is modified by the presence
of the free-electron form factors F1 and F2 [14],

H � � � �p� eF1�
�A� 	 �m	 eF1�
�A0

	F2�
�
e
2m

�i� � E� �� � B�; (2)

where 
 denotes the Laplacian operator. This
Hamiltonian accounts only partly for the interaction of
the electron with high-frequency photons. The remaining
high-energy contribution can be represented as a local
type of effective interaction. It is obtained by matching
the low-energy limit of scattering amplitudes derived
from the Hamiltonian (2) and from full QED in a way
that will be discussed below.

In the calculation of electron self-energy corrections, it
is often convenient to evaluate contributions due to the
high- and the low-energy virtual photons separately. The
separation is achieved by introducing a certain cut-off
parameter, which in our calculation is chosen to be the
photon mass. The low-energy part is then identified as the
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difference of the contributions with the massless and the massive photons. In order to calculate it, we perform the Foldy-
Wouthuysen transformation of the Hamiltonian H followed by the Power-Zienau transformation, as described in
Ref. [15],
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Here, E � Ejr�0, B � Bjr�0, and � � F2�0�. In the
Hamiltonian HPZ we neglected the spin independent
terms and the 
 dependence of the form factors.
Moreover, the terms with � will be needed only in the
two-loop calculation.

We consider now the one-loop self-energy contribution
to the bound-electron g factor. It is represented by the sum
of three parts, �g�1� � g�1�1 	 g�1�2 	 g�1�3 . The first part
comes from the free-electron form factors in the
Hamiltonian H, the second part is due to an additional
term that matches scattering amplitudes, and the third
part is a low-energy-photon contribution that originates
from the Hamiltonian HPZ and is very similar to the
Bethe logarithm in the hydrogen Lamb shift. All these
parts are calculated in the following.

Form-factor contribution.—We evaluate this part by
separating the Hamiltonian (2) into the unperturbed
(Dirac) Hamiltonian and the interaction part and apply-
ing the standard Rayleigh-Schrödinger perturbation the-
ory. Taking into account that only the first two terms in
the 
 expansion of form factors contribute to the order of
interest, we write the interaction Hamiltonian as
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where the slope of the form factors are known to be
F0
1�0��

�
2���1=4�2=3ln�� and F0

2�0� � �=�12��, where
� is the ratio of the photon mass to the electron mass.
Applying perturbation theory in first and second orders
and separating contributions linear in the magnetic field,
we obtain the correction to the g factor of an nS state,
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Spin-dependent scattering amplitude.—It represents a
high-energy contribution which goes beyond the on-shell
form-factor treatment. Here we only sketch the idea of the
derivation; the details will be presented elsewhere. We
first introduce the skeleton amplitude of the free-electron
scattering off both the Coulomb and the magnetic exter-
nal field. Then we add an electron self-energy loop in-
150401-2
serted into the skeleton diagram in all possible ways.
Infrared divergences present in loop-momentum inte-
gration are regularized by employing the photon mass.
Next, we subtract the skeleton amplitude with vertices
modified by the electron form factors F1 and F2, expand
in all external momenta, and keep terms of the third
power in external momenta only. The resulting amplitude
can be represented by the following effective-interaction
Hamiltonian (B � const)
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The corresponding contribution to the g factor reads:
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Low-energy part.—This contribution is induced by the
virtual photon of low energy.We first recall the expression
for the low-energy part of the Lamb shift,
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where HS is the Schrödinger Hamiltonian. In the
above, we assume the implicit difference between mass-
less and massive photons and keep only the terms that
do not vanish when � ! 0. In practice, one calculates this
with a cut-off k < # and later performs the replacement
ln2# ! ln�	 5=6 [14]. We mention that this replace-
ment is not unique and its specific form depends on the
actual integrand. Equation (8) coincides with the stan-
dard definition of the Bethe logarithm lnk0, which has
the explicit values lnk0�1S� � 2:984 128 555 and
lnk0�2S� � 2:811 769 893.

Here, we are interested in all possible relativistic cor-
rections to Eq. (8) induced by the Hamiltonian HPZ which
are linear in the B field. There are six such corrections
presented in Table I. The terms involving E and @jB

i

represent corrections to the vertex ��er �E�, and the
others yield corrections to H, E, and !. The results listed
in the third column of Table I involve the standard Bethe
logarithm lnk0 and its modification lnk3 defined as
Z
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We calculate lnk3 numerically, using a finite-difference
representation of the Schrödinger Hamiltonian HS, and
obtain the following results for the 1S and 2S states:
lnk3�1S� � 3:272 806 545 and lnk3�2S� � 3:546 018 666.
Finally, we present the sum of all six contributions from
Table I as

g�1�3 �
�
�
�Z��4

n3
32

9

�
ln

�

�Z��2
�

5

12
�
lnk0
4

�
3

4
lnk3

�
: (10)
Two-loop contribution.—The complete two-loop self-
energy of order �Z��4 consists of contributions related to
the electron form factors, to the two-photon scattering
amplitude, and to the low-energy part. In the present
investigation we derive an expression for the low-energy
part only. This gives the complete result for the logarith-
mic contribution of relative order �Z��4. Moreover, we
observe that in the one-loop case, the low-energy part
yields the dominating contribution of about 75% of the
constant term. Arguably, this is a general feature of all
radiative corrections, another example being the hydro-
gen Lamb shift. We thus assume that also in the two-loop
case, the low-energy part provides the dominant contri-
bution to the constant term. A derivation of the remaining
two-loop contributions can in principle be carried out
along the lines presented above.

Let us now identify the two-loop low-energy correc-
tion. When both photons are of low energy, the
B-dependent part is of a higher order and thus negligible.
The contribution of interest comes when only one photon
is of low energy. The second photon effectively modifies
the vertex, and only the part with the anomalous mag-
netic moment is relevant, as the slope of the form factors
contributes to higher orders. There are two equivalent
contributions obtained by interchanging the photons,
which results in an additional factor of 2. The effective
Hamiltonian that accounts for the anomalous magnetic
moment is given by Eq. (3). The calculation of the Bethe-
logarithmic contributions is the same as for the one-loop
case, but involves different overall factors for each term,
which are listed in the fourth column of Table I. Using the
one-loop results, we obtain for the sum of all low-energy
contributions,
TABLE I. Breakdown of the low-energy co
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where the numerical value of the constant term
is a�2�40 �1S� � �18:477 948 664�1� and a�2�40 �2S� �
�19:781 820 939�1�. The term with ln� is canceled by
corresponding contributions coming from the slope of the
form factors and the two-loop scattering amplitude.

Results and discussion.—We first summarize our cal-
culation for the one-loop self-energy correction. The total
analytic result for an nS state is

�g�1� �
�
�

�
1	

�Z��2

6n2
	
�Z��4

n3

�
32

9
ln��Z���2�	

73

54
�

5

24n

�
8

9
lnk0�

8

3
lnk3

�
	�Z��5Gn�Z�

�
; (12)

where the remainder function Gn�Z� incorporates all
contributions of higher orders in Z�, and the numeri-
cal value of the constant term in order �Z��4 is a�1�40 �

�10:236 524 318�1� for the 1S state and a�1�40 �
�10:707 715 607�1� for the 2S state. The first two terms
in Eq. (12) are well known; the first one is the famous
Schwinger correction and the second was derived previ-
ously for the 1S state in Ref. [13].

By subtracting all known terms of the Z� expansion in
Eq. (12) from numerical data [5,6], one can isolate the
one-loop self-energy remainder Gn�Z� and improve its
numerical accuracy for carbon and oxygen by extrapolat-
ing results for higher values of Z. The higher-order con-
tribution extracted directly from numerical results of
Ref. [5] reads G1�6� � 22:19�24� and G1�8� � 21:86�6�.
An extrapolation of numerical data [5] for Z > 8 yields
the results for the self-energy remainder G1�6� �
22:160�10� and G1�8� � 21:859�4�, which are signifi-
cantly more accurate. In addition, we obtain the following
result for the total contribution of order �Z��5:
G1�0� � 23:0.

The result for the two-loop self-energy contribution is
given by Eq. (11). We estimate the uncertainty due to
uncalculated parts g�2�1 and g�2�2 as 30% of the constant
term. Explicitly, the two-loop self-energy correction for
ntribution to the bound-electron g factor.

�g two-loop prefactor
1
6 � lnk0 � ln�Z��2 	 ln�� �=3

�13 � lnk0 � ln�Z��2 	 ln�� 2�

�56 � lnk0 � ln�Z��2 	 ln�� 2�

�12 � lnk0 � ln�Z��2 	 ln�� 2�
13
12 � lnk0 � ln�Z��2 	 ln�� �

�12 � lnk3 � ln�Z��2 	 ln�� 2�
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TABLE II. Individual contributions to the 1s bound-electron g factor, 1=� from [12] is 137:035 999 11�46�.

12C5	 16O7	

Dirac value (point) 1:998 721 354 39�1� 1:997 726 003 06�2�
Finite nuclear size 0:000 000 000 41 0:000 000 001 55
Free QED, ���=�� 0:002 322 819 47�1� 0:002 322 819 47�1�
Binding SE, ���=�� 0:000 000 852 97 0:000 001 622 67�1�
Binding VP, ���=�� �0:000 000 008 51 �0:000 000 026 37�1�
Free QED, ���=��2 � � � ��=��4 �0:000 003 515 10 �0:000 003 515 10
Binding QED, ���=��2�Z��2 �0:000 000 001 13 �0:000 000 002 01
Binding QED, ���=��2�Z��4 0:000 000 000 41�11� 0:000 000 001 06�35�
Recoil 0:000 000 087 63 0:000 000 116 97

Total 2:001 041 590 52�11� 2:000 047 021 28�35�
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the 1S state is
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We now turn to the experimental consequences of our
calculation. A previous compilation of theoretical contri-
butions to the 1S bound-electron g factor was given in
Ref. [5]. In the present work we modify it in several ways,
with the corresponding contributions listed in Table II:
(i) we employ the new, more accurate results for the
one-loop self-energy remainder; (ii) we use the analytic
result of Ref. [7] for the leading term of the Z� expan-
sion of the first-order magnetic-loop vacuum-polarization
correction; (iii) we include the leading part of the two-
loop self-energy correction of order �2�Z��4 obtained in
this work [Eq. (13)]. We assume that the uncertainty due
to other uncalculated two-loop corrections is absorbed
into the error bars of the constant term in Eq. (13).

As compared to the previous compilation [5], the ac-
curacy of the theoretical value for carbon is improved by a
factor of 3. In case of oxygen, only a small improvement
of accuracy is achieved, but the theoretical value is
shifted slightly outside of the error bars given in
Ref. [5]. The described modification of the theoretical
predictions for the bound-electron g factor influences
the electron-mass values derived from the experiments
on carbon [1] and oxygen [2]. Following Refs. [2,10] and
using the g-factor values from Table II, we obtain the
following results for the electron mass,

m�12C5	� � 0:000 548 579 909 41�29��3� u; (14)

m�16O7	� � 0:000 548 579 909 87�41��10� u; (15)

where the first uncertainty originates from the experi-
mental value for the ratio !L=!c and the second uncer-
tainty comes from the theoretical result for the bound-
electron g factor.

In summary, we have presented an approach for a
systematic derivation of higher-order QED corrections
to the g factor of a bound electron. We obtained the
150401-4
complete result for the one-loop self-energy correction
of order ��Z��4. The derived contribution is in excellent
agreement with the previous numerical calculation. The
developed approach was then applied to the most prob-
lematic two-loop self-energy correction. We obtained the
logarithmic contribution to order �2�Z��4 ln�Z���2 and
the dominant part of the corresponding constant term. As
a result, we improved the accuracy of the theoretical
predictions for the 1S bound-electron g factor for carbon
and oxygen and presented new values for the electron
mass derived from the corresponding measurements.
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