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Although molecular dynamics methods are commonly used to drive biomolecular simulations, the
technique provides insufficient sampling to impact studies of the 200-300 residue proteins of greatest
interest. One severe limitation of molecular dynamics is that the integrators are restricted by resonance
phenomena to small time steps (At < 8 fs) much slower then the time scales of important structural and
solvent rearrangements. Here, a novel set of equations of motion and a reversible, resonance-free,
integrator are designed which permit step sizes on the order of 100 fs to be used.
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Developing the capability to determine rapidly the
conformational equilibria of models of proteins in aque-
ous solvent by simulation is a major goal of computational
biophysics. If achieved, this would permit theoretical
studies to impact the current understanding of the struc-
ture, function, and design of proteins.

Modern molecular dynamics (MD) and Monte Carlo
methods are currently limited by two bottlenecks: the
high barriers which arise during the folding process and
the multiple time scales inherent in the dynamics. En-
hancing the rate of barrier crossing events without in-
troducing bias, or introducing bias that can be rigorously
removed a posteriori, is at the heart of many new ap-
proaches [1,2]. Although promising, these methods do not
directly address the limitation imposed by the multiple
time scales inherent in the problem and, hence, suffer
from an a priori loss of efficiency. For example, the period
of a C-H stretch in the backbone of a peptide is on the
order of femtoseconds while large scale domain motion
occurs on time scales of microseconds for the larger more
complex proteins of real interest. In addition, the methods
of Refs. [1,2] often concentrate on the solute and do not
attempt to speed equilibration/sampling of the solvent
which then becomes the bottleneck in the computation.

Multiple time step (MTS) integrators, such as the ref-
erence system propagator algorithm (RESPA) [3], were
introduced to alleviate time scale separations in a fairly
straightforward manner, but efficiency gains are funda-
mentally limited by resonance phenomena which restrict
the time steps used by these solvers to Az < 8 fs in bio-
physical systems [4]. The basic difficulty is that MTS
integrators, even those that possess the symplectic prop-
erty of Hamilton’s equations, are derived using perturba-
tion theories and, therefore, suffer from the same
resonance problems that plague all perturbative tech-
niques [4]. Although clever methods have been developed
to help overcome resonance phenomena [5], current ap-
proaches involve implicit equations that require both non-
reversible solvers and the introduction of a stochastic
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bath. The latter actually reduces phase sampling by over-
damping the motions that are often of key biological
importance [6]. The use of stochastic baths, also, ob-
viates the symplectic property and destroys time reversal
symmetry, both of which are key to employing current
techniques as part of hybrid Monte Carlo (HMC)
schemes [7].

In this Letter, a novel set of resonance-free equations of
motion is developed for use in MD simulations via the
non-Hamiltonian theoretical statistical framework of
Ref. [8]. The new equations of motion are shown to
generate, rigorously, the canonical distribution in the
physical configuration space. Integrators for this set of
equations are derived using symmetric operator splitting
techniques that preserve the resonance resistant character
of the equations. These solvers thus permit very large
time steps to be employed and ergodic sampling to be
obtained without recourse to stochastic baths and/or im-
plicit methods. While MD is very efficient on novel large
scale parallel computers like IBM’s BlueGene [9] and,
hence, is used here, the new numerical integrator could
also be used to drive HMC sampling schemes based on a
new non-Hamiltonian HMC formalism [10]. By applying
the method to simple examples as well as a model of
liquid water and a protein in vacuo, it is possible to
evaluate, separately, the enhancement in time step for a
solvent and a typical biomolecule. It is found that time
steps of Az = 100 fs can now be employed to treat both
solutes and solvents without losing numerical stability or
affecting equilibrium properties, an increase of a full
order of magnitude in step size compared to multiple
time standard methods.

The new equations were designed to have the following
properties: (1) The equations should be simple and sample
the desired phase space efficiently. (2) They eliminate
resonance by incorporating a set of constraints that for-
mally prevents energy from building up in any one mode.
Since any mode in the system can become resonant, a
constraint should be placed on each degree of freedom.
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(3) They employ a deterministic heat bath coupled to each
degree of freedom in order to ensure ergodicity.
Consider and N -particle system with positions
r;,...,ry = R and momenta p;, ..., py interacting via
potential, ¢(ry,...,ry). Let x, v denote one Cartesian
position and velocity pair, respectively. For each pair, the
following non-Hamiltonian equations are proposed:

X =v; v=——Av
= Qan,jU%l,; <
1= T 2V,
j=1 B i=
vnl,j = v’]ljv"lz,j )lv”'llj J= 1’L
y = Chi =1L i=2M-1
Uny = 0 UniiUnis; J=LL 1= 4
. G, .
Uy, = ?J j=1L (D)

where F = —d¢(R)/dxand G, ; = QU%HJ — kgT. Here,
Q = kgT7?, ky is Boltzmann’s constant, T is the tempera-
ture, and 7 is the time scale associated with the bath. The
Lagrange multiplier, A, is determined such that the equa-
tions of motion satisfy the constraint, 2K(v, v,) = LkgT
with

L
2K (v, v,) = {mv2 + (%) Z QU%,,,_,}, 2
J=1

which yields A =[vF —L/(L + I)Zf:l Qv%lvl_vmvj]/
2K(v, v,)). Equation (2) ensures that the maximum ki-
netic energy that can accumulate in any one mode is
LkgT, which effectively eliminates resonance artifacts
in associated numerical integrators. The equations of
motion constitute a nontrivial combination of the massive
Nosé-Hoover chain [11] method and isokinetic dynamics
[11,12]. While Eqgs. (2) can be used to define a HMC
algorithm, they are not, themselves, equivalent to
Metropolis, Kawasaki, or Glauber Monte Carlo schemes.

In order to show that the equations of motion, Egs. (1),
produce the canonical configurational distribution, as-
suming ergodicity, the statistical theory of non-
Hamiltonian systems is employed [8]. The generalized
ensemble sampled by a set of equation of motion, I' =
&(I') with n, conservation laws, f(I') = C,, can be writ-
ten as [8]

Q= a0 -co @
k=1

where the metric determinant factor, /g(T), is given by
[8] dlog,g/dt = —Vp-&T). Here, I ={rv, 7%,
v i=1,..,Mj=1... Lk=1..,3N}. Comput-
ing the divergence Vr-é&(I') for Egs. (1) yields
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kpT(dlog./g/dt) = —(d/dt)[$(R) + 3, 7*®] and the
equations give rise to the isokinetic distribution
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Here, H,(v,) = (1/2) ZIL-:] M, Qv%w_ﬁ = 1/kgT, and
trivial conservation laws of the form H, (v,) + kgT%H =
C for each degree of freedom have been integrated out.
The distribution is, indeed, canonical in the physical
configuration space, {ry, ..., ry}, allowing Egs. (1) to be
employed rigorously as sampling tool.

Egs. (1) can be numerically integrated using operator
splitting techniques following Refs. [11,12]. In the
Liouville operator formalism, the phase space evolves in
time according to I'(r) = exp(iL1)I"(0), and a single time
step of evolution is given by I'(A7) = exp(iLA®)I'(0) with
At =1t/P. The Liouville operator, iL = x(d/0x) +
v(0/0v) + z,.jvmj(a/aumj) + 1(d/9%), is decomposed
as

Ny
iL =iL, + Z iL, , + iLxgcs
p=1

. 9 9
iLy,p = (Fp = Apv) o= > Apvn, —
J M,

iL,=v—
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where the force has been split into N, parts, Zgil F,=

F, whose strength/time scale is assumed to decrease/
increase with p. Using MTS parameters, 0t =
At/Nyts, Nyrs = ]_[gil n, ny, =1, w,= ]_[le1 Rk,
wy; =1, and a Trotter decomposition of the classical
propagator, exp(iLAf), an accurate approximation to the
true evolution can be written as

T(Af) = {eiﬂ&iﬁt o (eiig)ﬁt[eil:lét}nl_z
% ei1:28t>"22 N el[Nd‘s’}F(O)eiZ"&
— pilnic piLo % pil:b1 oD s Loy Wp¥ pilyicdt (6)
where exp(iiff)ﬁt)is the transpose of exp(iL;5¢). In this

way, the weaker forces which are assigned larger p, are
evaluated less frequently but with larger weight w,, which
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equalizes them to the strong forces [e.g., w, /W, = n,
is the ratio of the strength of the p™ and the (p + 1)*
force]. The number of evaluations of the p" force is
Nurs/w, where, again, Nyrs is the total number of small
steps in the multiple time step procedure [3]. The error in
the scheme is O(A#?) for one full step and O(tA#?) for the
trajectory. Analytical solutions for each of the factorized
parts of the evolution operators, exp(iL;5¢), can be ob-
tained easily provided iLyyc is further decomposed fol-
lowing Ref. [11]. The decomposed multipliers, {A,, Axuc}
which sum to the total multiplier, Zp)t,, + Annc = A,
ensure the constraints, Eq. (2), are exactly satisfied by
each individual exponential operator, thereby maintain-
ing the resonance-free character of the exact equations of
motion. Judicious choices of the force decomposition into
strong intramolecular vibrations, weak short range forces
and weaker long range forces have been discussed in
detail elsewhere [3]. The multiple time step approach
improves efficiency because for chemical systems the
strongest forces are the least computationally intensive
to calculate. The new method will subsequently be re-
ferred to as the isokinetic Nosé-Hoover chain RESPA or
the Iso-NHC-RESPA (INR) technique.

In order to demonstrate the efficacy of INR, three
problems with very different separations of time scale
were selected for study. First, a quartic oscillator is
chosen to demonstrate unequivocally that the most basic
resonance phenomenon has been eliminated. In Fig. 1, the
convergence of the probability distribution function of
the quartic oscillator integrated at the resonant time
step, At = 7/ w, is given under both the new INR (L = 1,
M =3,N; =2), and the standard NHC-RESPA (NR)
(M = 3,N; = 2) [11]. In detail, an inner or small time
step of 8t = 7/(100w) is used to integrate the harmonic
part, while an outer or large time step of Ar = 7/w is
used to integrate the quartic term. The runs are of length
(5 X 107)At. While NR fails to sample the phase space
properly, INR yields the correct distribution. The error in
the distribution as a function of simulation time is esti-
mated in Fig. 1 by the quantity £(¢) = (a/Np) X

P IP(ri;t) — P(r;; )|, where Np is the number of
discrete points at which the distribution is computed, «
is an appropriately chosen normalization, and P(r;; ©) is
the exact distribution.

Second, a very challenging problem with extremely
large separations of time scales is a flexible water model
[13] at standard conditions simulated using particle mesh
Ewald [14] to compute the long range electrostatic inter-
actions. Because of resonance, a single time step method
cannot be employed using small time steps larger that
ot = 2 fs while MTS methods require large time steps
less than Az = 8 fs. However, INR (L =1,M =3,N,; =
3) generates the radial distribution function accurately
using a Ar = 100 fs time step as shown in Fig. 2(a).
The intramolecular forces were evaluated at a time step
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FIG. 1 (color online). (a) Distribution function of the quartic
oscillator, ¢(x) = (9/2)x> + (0.1/4)x* for the NR and the INR
methods using A = 7/w, the resonant time step and &t =
7/(100w). Here, T = 27/ w. (b) The error in the distribution
function as a function of time.

of 6t = 0.5 fs , intermediate range forces at a time step of
3 fs, and long range forces at the large time step, At,
specified in the legend of the figure for a given run. All
runs were of length 400 ps. The mean square displace-
ment of the oxygen atoms is independent of Az, hence, the
new method is free from the drag that would be caused by
the introduction of an overdamped bath. Since the over-
head of the technique is only 15% , threefold larger
speedups are obtained than previously reported for
MTS methods [3,15]. The ideal tenfold increase in com-
putational efficiency over standard MTS methods is not
fully realized (i.e., the time step is, now, 10 times larger)
due to the overhead in computing the intermediate and
short range forces. It is expected that a sixfold increase in
efficiency over standard MTS methods can be obtained
based on data given in Ref. [15] which would yield an
overall factor of thirtyfold increase in efficiency com-
pared to a single time step method. Efforts are currently
under way to implement the improved force decomposi-
tion of Ref. [15] in the PINY-MD software package [16]
which was employed to generate the results presented
here. Although it is possible to use still larger time steps
under INR, 100 fs is the correlation time for the observ-
ables given here, and using larger steps does not speed
convergence as measured by (r) [see Fig. 2(b)].
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FIG. 2 (color online). (a) The radial distribution function of
flexible liquid water calculated using NR and the INR methods.
(b) The error in the radial distribution function as a function of
time. The ‘“exact” distribution is generated from a long run
with a small time step. The legend reports the large or outer
time step, At.
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FIG. 3 (color online). (a) The C-H radial distribution func-
tion of HIV protease computed using NR and the INR methods.
(b) The intramolecular part of the distribution. All the carbon
and hydrogen atoms in the protein were considered in generat-
ing the distribution function. The legend reports the large or
outer time step, Af.

Third, a protein (the wild-type HIV-1 protease) is
studied in vacuo in order to demonstrate that the INR
technique can handle large molecules without masking
inefficiencies by including solvent. The protein is treated
using the all-atom CHARMM?22 force field [17]. Again, a
large step time of At = 100 fs was capable of providing
excellent results as exemplified by both short and long
range parts of the carbon-hydrogen radial distribution
function depicted in Fig. 3. (All carbon and hydrogen
atoms in the protein are used to construct the distribution
function.) The N,; = 3 part force decomposition used for
water was also employed here.

In the effort to develop methodology capable of driving
biomolecules to sample correctly their conformational
equilibrium, it is clear that combining a suite of tech-
niques, each designed to tackle one aspect of the problem,
is the path to a solution. Future work will focus on
pursuing this course of action.
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