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A novel electrical impedance tomography method is introduced for reconstruction of layered
biological tissues. The method utilizes a recently proposed image series expansion scheme in con-
junction with the WKB approximation. This results in a locality feature, assigning analytically to each
image term a local impedance associated with a unique layer, and thus leading to linear, efficient, and
accurate reconstruction procedures.
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The estimation of electrical parameters associated with
biological tissues via electrical impedance tomography
(EIT) has recently become of increased scientific and
public interest [1–3]. Here, we focus on a novel EIT
method utilizing a recently proposed quasistatic image
series expansion scheme for layered media [4] in con-
junction with the WKB approximation [5]. The resultant
WKB image series expansion is characterized by an out-
standing feature, namely, each image term corresponds
analytically and explicitly to a unique layer, leading to a
one to one mapping between each image term and the
local impedance of the associated layer. This locality
feature leads to an effective linear reconstruction of the
electrical impedance profile via Legendre expansion in
conjunction with Prony’s method (PM) and image peeling
(IP). Computations based on our novel procedures, in-
cluding noisy data, provide accurate, efficient, and stable
reconstruction, particularly when relatively small data-
base and, consequently, shallow penetration are required.
0031-9007=04=93(14)=148101(4)$22.50 
Quasistatic fields representation in plane-stratified me-
dia, a well-known and an intensively discussed topic (e.g.,
[4,6]), is briefly reviewed here for the sake of clarity and
completeness. The physical configuration of our problem,
depicted in Fig. 1, consists of a time-harmonic current
point source S, an observation point P, and n� 1 homo-
geneous layers. The parameter ��z� denotes the piecewise
constant conductivity of the medium, i.e., ��z� � �i, in
the ith layer, zi�1 < z< zi, i � 1; 2; . . . ; n� 1, z0 � �1,
zn�1 � 1. We note that ��z� should be replaced by the
complex conductivity &�z� � ��z� � j!"�z�; in every
layer, for which the inequality ��z� � j!"�z� is not
satisfied. The parameters "�z� and ! denote the medium
permittivity and the angular (low) frequency of the elec-
trode excitation (assuming time dependence ej!t), respec-
tively. The quasistatic electromagnetic field can be
expressed via a potential distribution, which has been
expended recently into the following rigorous image
series representation [4],
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where r and ~r0k, denoting the observation and the image
points, are given via

r � �x; y; z� and ~r0k � �0; 0; ~z0k�; (2)

respectively, and

~z 0
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In the WKB limit [5], the intrinsic reflection coefficients
Ki, i � 2; 3; . . . ; n, given by

Ki �
�i � �i�1

�i � �i�1
; K0 � 0; �0 � �1; (5)

are assumed to be sufficiently small, i.e.,

jKij � 1: (6)
Hence, maintaining image terms of O�jKij�, the expres-
sion in (1) is readily reduced into the WKB image series
expansion,

�WKB�r; r0� �
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r0i � �0; 0;�2zi � z0�: (7)

Note that the intrinsic reflection coefficient K2
1 is con-

tained, however, in (7) to accommodate the case �1 � 0,
leading to a non-WKB coefficient K1 � �1.

The basic ‘‘backscattering’’ reconstruction setup is
depicted in Fig. 1, setting �1 � 0. Both the excitation
current source I and the measured potential V��� are

confined to the plane z � z0 � 0, where � �
																
x2 � y2

p
denotes the radial distance. The potential V��� can be
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FIG. 1. Physical configuration and reconstruction setup.
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expressed, via (7), as

V��� � �WKB�r; r0�jz�z0�0;�1�0
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Evidently, Eq. (8) contains all the information required
for reconstruction of the layered media. Evaluation of an
individual ith image term in (8) leads to reconstruction of
Ki and zi and, consequently, the electrical impedance
��z� of the entire medium [via Eq. (5)]. While the stan-
dard least squares (LS) nonlinear optimization procedure
seems capable of obtaining the desired information re-
garding the unknown image terms, its execution for a
large number of images usually results in cumbersome
global minimum estimation and, thus, unacceptable com-
putation time, as expected for a nonlinear algorithm.
Herein, we seek an alternative linear procedure, which
has the potential of accurately reconstructing a relatively
large number of layers (i.e., distinct image terms) and
significantly reducing the execution time (relative to the
LS procedure).

Noting that the geometrical parameters zi are associ-
ated with the singularities of V��� in the complex �
plane, whereas the electrical parametersKi are associated
with their weights, one is tempted to perform the recon-
struction procedure via analytic continuation of V��� into
the complex domain. Such an approach is always possible
for an analytic operator (Laplace’s equation) relying on
analytic data [7]. However, in view of the well-known
unstable properties of analytic continuation procedures,
we focus here on real function analysis, namely, determi-
nation of the radius of convergence of each image in the
real � axis rather than detecting its singularity in the
complex � plane. To this end, standard Taylor series
expansion of V��� in (8) is equivalently expressed via
orthogonal Legendre polynomial expansion, thereby ef-
fectively evaluating the expansion coefficients by inner
products. Since 0 
 � <1, we use shifted Legendre
polynomial [8] Ll�1� 2�2�, defined on a unit window
width 0 
 � 
 w, w � 1, to expand the scaled potential
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V�s�� (with respect to the Legendre’s unit window width
0 
 � 
 1), leading to

V�s�� �
X1
l�0

bl�s�Ll�1� 2�2�; (9)

where [9]
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and s is a positive real scaling factor. Note that s can also
be regarded, via the second equality in Eq. (10), as a
scaling factor for Legendre’s unit window width w � 1
[with respect to a nonscaled potential V���].
Furthermore, while for i > 1, Ki � Ki, for i � 1, K1 �
1=2, and the unknown parameter is �2.

It is readily recognized that the individual n terms
contained in the right-hand side summation of Eq. (10)

may be regarded as n distinct exponentials 
2zi=s�																										
1� �2zi=s�2

p
��2 of power l, weighted by 2IKi
2zi=s�																										

1� �2zi=s�2
p

��1=��s�2�. Hence, the PM procedure [10]
exploiting 2n data points, i.e., bl�s�, 0 
 l 
 2n� 1 or,
equivalently, 2n inner products, can be utilized to recon-
struct n distinct exponentials and weights characterizing
the stratification geometry and electrical parameters, re-
spectively. Also, to avoid dominance of any one of the
exponentials contained in the right-hand side of Eq. (10)
the scaling factor s should be large enough to support the
entire reconstruction range, i.e.,

s � 2zi=w; (11)

leading to the inclusion of V��� well within the window
0 
 �=w 
 s. Note, however, that the selection s �
2zn=w results in almost linearly dependent exponentials
and, thus, should be avoided.

Following the PM procedure, the n unknown exponen-

tials 
2zi=s�
																										
1� �2zi=s�2

p
��2 are roots of the n order

polynomial equation
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where cn � 1. Let $2
i denote the ith root of (12), then,

$i � 
2zi=s�
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q
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leading to

zi �
$2
i � 1

4$i
s: (14)

The polynomial coefficients denoted by the vector C �

c0; c1; . . . ; cn�1�

T are solutions of the linear system,
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TABLE I. WKB reconstruction via the PM procedure for (a) oscillating and (b) positive intrinsic reflection coefficients Ki (w �
1, s � 2, �2;exact � 10S=m). Results for noisy data (SNRj��s5w � 60 dB, s5 � 15) are contained in square brackets.

Layer zi=w zi=w Error Ki Ki Error Error
i exact reconstructed �%� exact reconstructed �%�

�i�1;exact

�2;exact

�i�1;reconst

�2;exact
�%�

(a) 1 0 �1� 10�6 [ � 7� 10�6] 0 [0] 0.5 0.5 [0.5] 0 [0] 1.0 1.0 [1.001] 0.007 [0.05]
2 0.1 0.0997 [0.097] 0.25 [3.05] 0.1 0.0994 [0.092] 0.58 [8.27] 0.818 0.819 [0.832] 0.12 [1.73]
3 0.2 0.201 [0.216] 0.43 [8.16] �0:1 �0:099 [ � 0:100] 0.95 [0.09] 1 0.999 [1.017] 0.07 [1.75]
4 0.5 0.502 [0.473] 0.43 [5.48] 0.09 0.090 [0.096] 0.35 [6.47] 0.835 0.835 [0.840] 0.005 [0.6]
5 2 2.009 [2.064] 0.43 [3.21] �0:15 �0:150 [ � 0:149] 0.33 [0.59] 1.130 1.131 [1.134] 0.1 [0.38]

(b) 1 0 3� 10�7 [ � 3� 10�5] 0 [0] 0.5 0.5 [0.5] 0 [0] 1.0 1.0 [1.0001] 0.0003 [0.01]
2 0.1 0.0999 [0.101] 0.04 [0.85] 0.1 0.0999 [0.104] 0.14 [3.9] 0.818 0.818 [0.812] 0.029 [0.77]
3 0.2 0.199 [0.208] 0.23 [4.21] 0.1 0.099 [0.100] 1.5 [0.26] 0.670 0.672 [0.664] 0.33 [0.83]
4 0.5 0.499 [0.535] 0.22 [6.96] 0.09 0.086 [0.086] 4.6 [4.62] 0.559 0.565 [0.559] 1.17 [0.01]
5 2 2.072 [2.224] 3.6 [11.2] 0.15 0.147 [0.135] 2.2 [9.99] 0.413 0.421 [0.426] 1.85 [3.11]
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FIG. 2. Normalized WKB and exact potentials (�V��� and
���r; r0�jz�z0�0;�1�0 in (8) and (1), respectively), versus nor-
malized radial distance �=w (w � 1).
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AC � B; C � A�1B; (15)

where Aj;k�bj�k�1�s�, j;k�0;1; . . . ;n�1, B��
bn�s�;
bn�1�s�; . . . ;b2n�1�s��T , and T denotes the transpose op-
eration. Finally, the weight coefficients, denoted by the
vector K � 2I
$1K1; $2K2; . . . ; $nKn�

T=��s�2�, are
also solutions of the linear system

MK � D;K � M�1D; (16)

where Mi;j � �$2
j �
i and D � 
b0�s�; b1�s�; . . . ; bn�1�s��T .

The potential promise of the outlined method
[Eqs. (12)–(16)] is now demonstrated via numerical simu-
lations. As already noted, the selection of the scaling
factor s determines the maximal reconstruction depth.
The number of Legendre coefficients bl is finite and
limited since high order coefficients, associated with
high order inner products (numerical integrations) in-
volving high order Legendre polynomials, are difficult
to calculate due to a highly oscillating integrand. This, of
course, establishes a bound on the maximal number of
layers that can be reconstructed and seems to be an
inherent limitation of a quasistatic-type reconstruction
method. The results summarized in Table I reveal that a
very good reconstruction can be obtained via the PM
procedure for five layers of WKB medium, even for noisy
data, i.e., SNR � 60 dB (e.g., [11]) at the end point of the
widest Legendre window. The successful reconstruction
demonstrated in Table I(a), for oscillating intrinsic reflec-
tion coefficients Ki, is due to the excellent agreement
between the WKB potential V��� in (8) and the exact
potential ��r; r0�jz�z0�0;�1�0 in (1), as depicted in Fig. 2.
This excellent agreement is due to the oscillating reflec-
tion coefficients, leading to fast convergence of the image
series expansion in (1) and, thus, to minimization of the
truncation error caused by non-WKB image terms that
have been neglected in (8). This, however, is not the case
for positive intrinsic reflection coefficients, as depicted in
Fig. 2, leading to somewhat less accurate reconstruction
results [Table I(b)].
148101-3
The IP procedure is based on precise identification of
the ith image term [Eq. (8)], located in the closest vicinity
of the setup plane (associated with the closest layer), and
subsequently of both zi and Ki. Then, subtract its contri-
bution to the potential V��� in (8) and repeat the process.
This procedure is terminated then either once all the n
images are identified and peeled out or when the numeri-
cal noise associated with the successive peelings (sub-
stractions) governs. Evidently, successful execution of the
IP procedure can be carried out by appropriately adjust-
ing the scaling factor s to enhance the image contribution
corresponding to the smallest zi, in (10). Consequently,
the scaling factor sp for each peeling step p of the
algorithm has to satisfy the inequality

2zp=w < sp < 2zp�1=w: (17)
Note that, as p approaches n, the IP scaling factor in (17)
approaches that of PM in (11). The resultant coefficient
bpl �sp�, expressed as
148101-3



TABLE II. WKB reconstruction via the IP procedure for (a) oscillating and (b) positive intrinsic reflection coefficients
Ki (w � 1, �2;exact � 10S=m). Results for noisy data (SNR j��s5w� 60 dB, s5 � 15) are contained in square brackets.

Layer zi=w zi=w Error Ki Ki Error Error
i si exact reconstructed �%� exact reconstructed �%�

�i�1;exact

�2;exact

�i�1;reconst

�2;exact
�%�

(a) 1 0.01 0 0 [0] 0 [0] 0.5 0.5 [0.5] 0 [0] 1.0 1.0 [1.005] 0 [0.45]
2 0.25 0.1 0.100 [0.1003] 0.002 [0.3] 0.1 0.0999 [0.0995] 0.04 [0.52] 0.818 0.818 [0.823] 0.01 [0.56]
3 1 0.2 0.201 [0.206] 0.56 [2.92] �0:1 �0:102 [�0:101] 1.56 [0.49] 1.0 1.003 [1.007] 0.32 [0.66]
4 4 0.5 0.477 [0.483] 4.66 [3.40] 0.09 0.085 [0.081] 5.34 [10.3] 0.835 0.846 [0.856] 1.30 [2.55]
5 15 2.0 2.126 [2.281] 6.30 [14.0] �0:15 �0:146 [�0:148] 2.8 [1.12] 1.13 1.135 [1.154] 0.44 [2.20]

(b) 1 0.01 0 0 [0] 0 [0] 0.5 0.5 [0.5] 0 [0] 1.0 1.0 [1.0] 0 [0]
2 0.25 0.1 0.099 [0.098] 0.01 [1.62] 0.1 0.0999 [0.092] 0.10 [7.58] 0.818 0.818 [0.831] 0.02 [1.54]
3 1 0.2 0.199 [0.185] 0.38 [7.32] 0.1 0.098 [0.0998] 1.85 [0.16] 0.669 0.672 [0.68] 0.40 [1.58]
4 4 0.5 0.501 [0.516] 0.20 [3.17] 0.09 0.088 [0.1058] 2.51 [17.55] 0.559 0.564 [0.55] 0.85 [1.61]
5 15 2 2.165 [2.289] 8.25 [14.5] 0.15 0.156 [0.1239] 4.29 [17.37] 0.413 0.411 [0.429] 0.47 [3.75]
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indeed, equals asymptotically the pth image contribu-
tion, for sufficiently large l. Finally, taking the logarithm
of (18) for large l, i.e.,

lnbpl �sp� � ln
�
2IKp

�sp�2

�
� �2l� 1� ln

0@ 2zp

sp �
																				
1� �

2zp
sp
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r
1A

� Dp � Epl; (19)

followed by the first order polynomial LS fit, results in
explicit expressions for zp and Kp,

2zp � sp sinh�Ep=2�; Kp �
�sp�2

2I
exp�Dp � Ep=2�;

(20)
respectively, where Dp and Ep are real constants defined
in (19).

The IP procedure is demonstrated in Table II for the
same parameters specified in Table I and Fig. 2. It is
readily noted that while the IP procedure (Table II) leads
to more accurate results than the PM procedure (Table I)
for the first few layers, the results corresponding to the
subsequent layers are inferior to those obtained via the
PM procedure due to numerical noise accumulation, an
inherent disadvantage of the IP method. This observation
holds effectively for noisy data as well, i.e., for SNR �
60 dB (e.g., [11]) at the end point of the widest Legendre
window. Evidently, the oscillating reflection coefficients
lead to more accurate WKB approximation (Fig. 2), re-
sulting in an effective IP reconstruction procedure for
deeper layers.
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The potential promise of the novel EIT reconstruction
procedures presented herein has been demonstrated via
numerical simulations, including noisy data. Two linear
quasistatic reconstruction procedures have been intro-
duced: the PM procedure and the IP procedure. Both
methods are efficient for shallow reconstruction due to
the following factors: (i) accuracy limitation in calcula-
tion of higher order Legendre coefficients (determining
the maximal number of layers); (ii) constraints (11) and
(17), for the PM and the IP algorithms, respectively
[effective regularization conditions, stemming from the
direct problem solution (8)] cannot be satisfied simulta-
neously for both shallow and deep layers (e.g., the fifth
layer in Table I); (iii) numerical noise accumulation for
the IP method. These procedures can be extended for non-
WKB profiles provided that WKB image series expansion
in (7) is replaced by its rigorous image series representa-
tion (1)–(5).
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