
VOLUME 93, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S week ending
1 OCTOBER 2004
Falling Paper: Navier-Stokes Solutions, Model of Fluid Forces, and Center of Mass Elevation
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We investigate the problem of falling paper by solving the two dimensional Navier-Stokes equations
subject to the motion of a free-falling body at Reynolds numbers around 103. The aerodynamic lift on a
tumbling plate is found to be dominated by the product of linear and angular velocities rather than
velocity squared, as appropriate for an airfoil. This coupling between translation and rotation provides a
mechanism for a brief elevation of center of mass near the cusplike turning points. The Navier-Stokes
solutions further provide the missing quantity in the classical theory of lift, the instantaneous
circulation, and suggest a revised model for the fluid forces.
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FIG. 1. Rise of a falling journal cover under windless con-
ditions, selected frames from a footage filmed at 300 frames=s.
A piece of paper or a leaf flutters and tumbles down in a
seemingly unpredictable manner (see Fig. 1). This rich
dynamical behavior has inspired many experimental and
modeling works on falling plates [1–4] and disks [5,6], as
well as observations of dispersing seeds [7]. Even before
the establishment of aerodynamic theory, Maxwell of-
fered a qualitative explanation of the correlation between
the sense of rotation and the drift direction of a tumbling
card [8]. More recently, Willmarth et al. classified dy-
namics at different Reynolds numbers and dimensionless
moment of inertia [5]. Belmonte et al. further identified a
dimensionless number governing the transition from flut-
tering to tumbling [2]. Mahadevan et al. observed a
relation between tumbling speed and the thickness of a
falling card [3]. Models based on inviscid theory [9–14]
also exhibit dynamics qualitatively similar to those seen
in experiments.

What appears to be lacking is a model of the fluid force
and torque that is constructed and tested against experi-
ments or computations. The force predicted by inviscid
theory includes added mass and a lift proportional to the
product of velocity and circulation [10]. An unresolved
issue is the choice of the circulation around the falling
object, which cannot be determined from inviscid theory.
Previous models either assumed the circulation to be a
constant [14] or to be linearly proportional to the trans-
lational velocity [2,9,11]. The latter is appropriate for a
steady translating airfoil at a small angle of attack, as
given by the celebrated Kutta-Joukowski condition which
requires flow velocity to be finite at the singular trailing
edge [15]. The resulting lift is quadratic in velocity.While
the Kutta-Joukowski condition works remarkably well in
this special case, there is no direct evidence that it holds
for an object fluttering or tumbling in a fluid.

Theoretical progress is in part hindered by the lack of
simultaneous measurements of instantaneous forces and
flows around a falling object. Here we solve the Navier-
Stokes equations for the fluid subject to the dynamics of a
falling body in two dimensions. Solving the falling paper
0031-9007=04=93(14)=144501(4)$22.50 
problem in the most general case, i.e., free fall of a three
dimensional flexible sheet, is daunting and unrealistic at
Reynolds numbers of the order of 103. To simplify the
problem, we note that bodies of relatively large span-to-
chord ratios fall essentially along a two dimensional
plane [4]. In the case of a business card, the span-to-chord
ratio is about 1.8, and the motion in the spanwise direction
is negligible. Taking advantage of these observations we
focus on a falling rigid plate in a two dimensional fluid
governed by the incompressible Navier-Stokes equations.
The choice of a rigid plate is convenient for numerics and
for comparison against existing theories. Obtaining ac-
curate numerical solutions in this regime turns out to be
nontrivial due to the thin tip of the geometry, the moving
boundary coupled to the fluid forces, and the small fluid
torque. Our numerical method is based on a vorticity-
stream function formulation in a conformal grid fitted to
the plate [16,17]. The conformal grid concentrates points
at the edges of the plate and can be mapped onto a
Cartesian grid in which we discretize and solve the
Navier-Stokes equations efficiently via fast Fourier trans-
form [18]. In the mapped Cartesian grid the Navier-
Stokes equations take the following form:
2004 The American Physical Society 144501-1
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FIG. 2 (color online). Navier-Stokes solution of a tumbling
ellipse at Re � 1100, I
 � 0:17, and e � 0:125. (a) Body-fixed
coordinate system and kinematic variables. (b) Trajectory and
orientation of the chord (major axis of the ellipse) over five
periods of motion. (c) The history of the chord and the force
vector, equally spaced in time for the first period of the
trajectory in (b). The chords numbered from 1 to 4 correspond
to the frames shown in (d) and to the times marked with dots on
the force history of Fig. 3. (d) Vorticity field at four instants
during a full rotation. The frames display an area of 5� 2:5
chords and they are 4a=ut time units apart. The vorticity field is
color coded on a logarithmic scale.
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where! and u are, respectively, the vorticity and velocity
fields, and S is the scaling factor associated with the
conformal mapping from the exterior of the plate to a
semi-infinite strip. The use of body-fixed coordinates
eliminates spatial interpolation as the plate moves with
respect to the fluid. This turns out to be crucial for
obtaining the almost periodic trajectories seen in Fig. 2.
The forces on the plate are calculated by integrating the
stress tensor along the body [19]. The updated velocity is
then fed back to the Navier-Stokes solver through the
boundary conditions. The method is applicable to arbi-
trary shapes of the cross section, and for simplicity, we
choose an ellipse. To gauge the grid dependence of the
results, we repeat simulations using grid systems of 512�
1024 and 256� 512 and find that the results presented
below hold for both resolutions.

A falling ellipse is characterized by six parameters: the
major and minor semiaxes, a and b, the densities of the
ellipse, 	b, and of the fluid, 	f, the kinematic viscosity of
the fluid �, and the gravitational acceleration g [see
Fig. 2(a)]. From these parameters, three dimensionless
quantities can be defined: the Reynolds number, Re �
2uta=�, using the terminal velocity estimated by balanc-
ing gravity against the fluid force on a plate of size 2a and

drag coefficient 1, ut�
����������������������������������
�bg�	b=	f	1�

q
; the dimension-

less moment of inertia, I
 � b�a2�b2�	b
2a3	f

; and the aspect ratio

of the ellipse e � b=a. Note that the dimensionless iner-
tia is related to the Froude number Fr defined in previous
work [2], I
 / Fr2.

In Fig. 2 we show the Navier-Stokes solution of a
tumbling ellipse for Re�1100, I
 � 0:17, and e �
0:125, released from rest with an initial angle of 0:2rad
with respect to the horizontal. After fluttering for a short
transient, the ellipse tumbles with an almost periodic
motion [five periods are shown in Fig. 2(b)], which con-
sists of gliding and quick 180� rotations. During the
glide, the ellipse pitches up due to the fluid torque. The
increased angle of attack results in an increased drag;
thus the ellipse slows down while pitching up. The small
translational velocity results in a cusplike shape near the
turning points. As the plate initiates a turn, the wake
becomes unstable and breaks up into vortices due to
Kelvin-Helmholtz instability. The vortices have a char-
acteristic size of half of a chord.

A casual observer of falling leaves or paper might
notice that while falling downward on average, they can
rise momentarily as if picked up by wind. In Fig. 1 we
verify this observation by filming a falling journal cover
at high speed. The case shown in Fig. 2 is an example of
144501-2
center of mass elevation for a rigid plate without ambient
wind. The swinging up motion may be familiar to those
who have seen sailplane stunts performing dead loops. At
sufficiently high Reynolds numbers, Joukowski’s theory
predicts phugoid motion which swings up periodically in
the special case where the angle of attack is constant and
drag is negligible [9]. The situation here is different. The
Reynolds number is relatively low, about 103, and drag is
non-negligible. A straightforward modification of
Joukowski’s model to incorporate the lift-drag polar at
Reynolds number about 103 predicts no center of mass
elevation [20].

To investigate what might be missing in the Joukowski-
like model of a falling plate, we turn to the instantaneous
forces (Fig. 3). It is instructive to decompose the pressure
force into the contribution of the added mass and the lift
proportional to circulation, as described in inviscid the-
ory [10,14]. The viscous force and torque F�x , F�y , and ��

are relatively small (see Fig. 3) and can be treated as
perturbations. The force components, Fx and Fy, and
the torque � are defined with respect to body-fixed axes
144501-2
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[see Fig. 2(a)] and can be modeled as

Fx�		fv��m12v�	m11 _u��	f		b�Agsin��F
�
x ;

(3)

Fy � 	fu�	m21u�	m22 _v��	f		b�Agcos��F
�
y ;

(4)

� � �m11 	m22�uv	 Ia _�� ��; (5)

where u�t� and v�t� are the components of the ellipse
velocities along its major and minor axes, ��t� is its
angular velocity, ��t� is the angle between the x axis
and the direction of gravity [see Fig. 2(a)], � is the
circulation around the body, A is the area of the ellipse,
mij is the components of the added mass tensor, and Ia is
the added moment of inertia [15]. In the expression for
the forces Fx and Fy, the first term is the lift due to the
circulation around the ellipse, the second and the third
terms correspond to the added mass, the fourth term is the
buoyancy corrected gravity, and the F�s are the viscous
forces.

The circulation � is unknown and needs to be modeled
to complete the equations for the pressure force. Here, we
fit the pressure force from the Navier-Stokes solution by
using Eqs. (3) and (4), where the added mass coefficients
are left as free parameters and � has two contributions,
one proportional to the angular velocity of the ellipse �
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FIG. 3. The fluid force and torque on the tumbling ellipse
shown in Fig. 2. Solid lines are computed forces, with the total
force shown as thin lines and the pressure force as thick lines.
The corresponding dashed lines are the best fits of the data
based on the quasisteady model of Eqs. (3)–(5). The added
mass tensor m11 � 0:53m and m12 � 3:1m, m22 � 1:5m, m21 �
0:56m, and the circulation around the ellipse � � 2:6a2��
0:49ajvj sin�2�� are obtained from the pressure force. Thesemij
differ from those predicted by inviscid theory (minv

11 � minv
21 �

0:0491m and minv
22 � minv

12 � 3:14m). The viscous corrections
are modeled with the expansions F�x � 	�11u	 �12u

2, F�y �
	�21v	 �22v

2, and �� � �31uv	 �32�	 �33�j�j, with
�11 � 0:18, �12 � 0:0075, �21 � 0:070, �22 � 0:054, �31 �
	0:31, �32 � 	0:05, and �33 � 0:16.
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and the other given by the Kutta-Joukowski condition (see
Fig. 3).

� � cRa2�� cLajvj sin�2��; (6)

where jvj is the speed of the ellipse and � is its angle of
attack, defined as the angle between the major axis of the
ellipse and its velocity vector, � 2 �0; 2��.

For the falling ellipse shown in Fig. 2, the rotational
contribution is about 10 times larger than the translational
one. The lift corresponding to the circulation � is about
75% of the total lift, the remaining lift being generated by
the added mass terms with coefficients m12 and m21. It is
worth noting that valuesmij from the force fit differ from
those given by inviscid theory (see the caption of Fig. 3).
Skin friction gives a contribution of about 25% of the
total force and can be approximated with an expansion in
the kinematic variables the ellipse u, v, and � (see the
caption of Fig. 3). The pressure torque is 2 orders of
magnitude smaller than the torque on an ellipse steadily
translating with speed ut. However, it can be modeled by
a term proportional to uv as predicted by inviscid theory
(see Fig. 3).

The circulation model of Eq. (6) can be validated by
integrating the velocity field outside the ellipse. Figure 4
shows the circulation obtained both by fitting the pressure
force with Eqs. (3) and (4) and by integrating the velocity
field. The circulation displays a strong dependence on the
motion of the ellipse and cannot be modeled by a constant
value as in [14] or by the classical expression for a trans-
lating airfoil as in [2,11]. Instead, the circulation is better
approximated by Eq. (6). The negative peaks in the cir-
culation correspond to vortices shed at the turning points
of the ellipse trajectory.

In terms of the traditional decomposition of forces into
lift and drag, the proportionality between the circulation
around the ellipse and its rotational velocity corresponds
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FIG. 4. Circulation as a function of time for the falling
ellipse of Fig. 2. The thick line corresponds to the value of
the circulation found by integrating the vorticity field up to a
radius of 3=2 chords from the center of the ellipse. The thin line
corresponds to the circulation obtained from fitting the pres-
sure forces, the dashed line to the contribution of the rotational
term of Eq. (6) alone. The peaks of negative circulation not
captured by the fit correspond to the vortices shed by the ellipse
at the turning points of its trajectory.
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FIG. 5 (color online). Trajectories obtained from ordinary
differential Eqs. (3)–(5) for different values of the translational
and rotational lift coefficients cL and cR: (a) cR � 2:6, cL �
0:49, from the fit of Fig. 3; (b) cR � 0, cL � 1:5, as in classical
translational lift. Center of mass elevation occurs in (a) but is
absent in (b).
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to a lift proportional to �jvj instead of jvj2 as in the case
of a translating plate. In the classical context, �jvj is the
predicted lift for an airfoil translating and pitching at
small amplitude [21]. This is particularly important at the
turning points of the trajectory, where the translational
velocity is small. There, the increased angular velocity �
compensates for the decreasing velocity jvj and the lift
generated is sufficient for the center of mass of the ellipse
to elevate. This mechanism for lift augmentation has been
recently emphasized in insect hovering [22].

To further verify the connection between center of
mass elevation and rotational lift, we arbitrarily vary
the coefficients of the rotational and translational contri-
butions in Eq. (6). The tumbling trajectories obtained
with such a procedure are shown in Fig. 5. Models with-
out rotational lift display center of mass elevation only for
unphysical values of the lift coefficient (cL > 7). On the
other hand, models including rotational lift show center
of mass elevation for the coefficients obtained from
Navier-Stokes solutions (cL � 0:49 and cR � 2:6 in the
case shown in Fig. 5).

Finally the flow-induced coupling between translation
and rotation can decrease the speed of descent. The tum-
bling ellipse shown in Fig. 2 has an average descent speed
of 0:4ut. In contrast, an identical ellipse parachuting
down with its major axis perpendicular to the direction
of motion would reach a terminal velocity of 0:77ut. It
would be interesting to find out whether the slow descent
and the stable direction of tumbling motion are exploited
by nature, for example, in seed dispersion.

In our current work we are further validating the model
presented in this Letter experimentally and using it to
144501-4
address the nature of the transition between fluttering and
tumbling [23]. Understanding free-falling bodies might
also have interesting applications to insect flight, an area
of research that partly motivated this study. Although
insects might take advantage of both active and passive
mechanisms to control their flapping wings, only pre-
scribed motions have been considered so far [24,25].
Falling paper is a beautiful example of a passive flight.
We hope that the model presented here will be also
relevant to descriptions of forces in general flapping
motion.
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