
VOLUME 93, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S week ending
1 OCTOBER 2004
Soliton Eigenvalue Control in Optical Lattices
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We address the dynamics of higher-order solitons in optical lattices, and predict their self-splitting
into the set of their single-soliton constituents. The splitting is induced by the potential introduced by
the lattice, together with the imprinting of a phase tilt onto the initial multisoliton states. The
phenomenon allows the controllable generation of several coherent solitons linked via their
Zakharov-Shabat eigenvalues. Application of the scheme to the generation of correlated matter waves
in Bose-Einstein condensates is discussed.
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During the past decades the concept of soliton has
penetrated almost all areas of physics including hydro-
dynamics, plasma physics, optics [1], and, recently, Bose-
Einstein condensates (BECs) in cold gases [2,3]. Solitons
are formed when the linear effects that cause spreading of
wave packets are balanced properly by nonlinearity. In
the case of single solitons, such balance is remarkably
robust, a property that makes them suitable for the trans-
mission and manipulation of, e.g., light and matter. In
particular, optical solitons have been thoroughly studied
due to their potential applications in telecommunications.
In soliton-based communication systems each soliton can
be used as a bit of information, but methods to encode and
to manipulate information in higher-order, or multisoli-
ton, bound states (BSs) have also been proposed, e.g., for
security enhanced information transmission [4]. In physi-
cal systems modeled by so-called completely integrable
evolution equations, such multisoliton states are made of
sets of several individual solitons, with different ampli-
tudes, glued together with zero binding energy. The am-
plitudes of the solitons ‘‘hidden’’ inside the BS are given
by the corresponding Zakharov-Shabat (ZS) eigenvalues
[1,4]. Because there is no binding energy between the
solitons forming the BSs, suitable perturbations can be
used to split them into their constituents [5].

In this Letter we propose to use weak optical lattices to
induce the self-splitting of BSs made of either optical or
matter waves, and thereafter to control the velocities of
the product single solitons. The optical lattices—periodic
light patterns that act like multiple potential wells—have
been demonstrated in nonlinear optics [6–8] and in BECs
[9]. They can also be used for particle sorting [10] or for
trapping arrays of neutral atoms [11]. Solitons in lattices
have been studied extensively in the discrete, or tight-
binding limit, in nonlinear optics (see [12]) and are
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starting to be investigated in BECs [13,14]. An important
feature of the condensates is the possibility to continu-
ously tune their nonlinearity, which is proportional to the
scattering length as that characterizes two-body inter-
actions, by using Feshbach resonances [15]. With this
technique the concept we introduce here can be tested
in condensates.

The generic equation describing the evolution of opti-
cal (matter) wave packets in the presence of Kerr (mean
field cubic) nonlinearity and a periodic potential induced
by a weak optical lattice is the nonlinear Schrödinger
equation
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In the optical context � is the wave function, � and � are
the longitudinal and transverse coordinates, respectively,
� is the strength of the cubic nonlinearity, p is the po-
tential depth, and R��� is the potential profile. Through-
out this Letter we assumed a periodic potential R��� �
cos�2��=T�, with the period T. Equation (1) models laser
beam propagation in slab waveguides. In this case � is
proportional to the slowly varying envelope of light field;
the longitudinal coordinate � is scaled in diffraction
lengths Ldif � kr20, with r0 being the beam width. The
transverse coordinate � is expressed in units of r0,
whereas the lattice depth is given by p � Ldif=Lref , where
Lref � c=��n!� and �n is the modulation depth of refrac-
tive index. For a focusing Kerr medium � � �1, whereas
for a defocusing one � � 1.

In the case of matter waves Eq. (1) describes the
dynamics of a one-dimensional Bose-Einstein conden-
sate confined in an optical lattice generated by means of a
standing laser wave of wavelength �. Now variable �
stands for time in units of � � 2m�2=�h, with m being
2004 The American Physical Society 143902-1



FIG. 1 (color online). Splitting of a three-soliton bound state
when (a) �in � 0:1, (b) �in � 0:3, (c) �in � 0:5, and
(d) �in � 1:4. Lattice depth p � 0:05.
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the mass of the atoms and h the Planck’s constant;� is the
longitudinal coordinate along the axis of the quasi-one-
dimensional condensate expressed in units of ���1. For
typical experiments � ranges from 0.8 to 3:2 �m.
Parameter p is proportional to lattice depth E0 expressed
in units of recoil energy Erec � h2=2m�2. Lattice depths
of the order E0 � 22Erec (p � 22) have already been
achieved [9]. In the quasi-one-dimensional BEC � �
2�asNa=�‘

2, where as is the s-wave scattering length,
Na is the number of atoms, and ‘ is the harmonic oscil-
lator length in the transverse direction [16]. The sign and
value of as and thus of � can be changed by varying the
applied magnetic field [15]. Positive � stands for repulsive
interactions while negative � stands for attractive ones.
Here we assume attractive, or self-focusing, interactions
with � � �1, and vary the depth of the periodic potential
from small values p� 0:05, when the potential can be
treated as a small perturbation, to values p� 1, when the
potential is of the order of nonlinearity. Also, we set T �
�=2, but the result can be extended to other values of the
period by using the scaling properties of the evolution
Eq. (1).

We aim for the possibility of extracting and controlling
the dynamics of the single-soliton constituents of the
N-soliton bound state corresponding to the initial con-
ditions: ���; � � 0� � N sech��� exp�i�in��, where �in

is the phase tilt or angle. Here we restrict ourselves to BSs
with N � 2; 3, thus carrying two or three single solitons.
The amplitudes �k and angles �k of the constituent
solitons in BSs are related with ZS eigenvalues �k as
�k � 2 Im�k and �k � 2Re�k [1,4]. Thus for BS
���; � � 0� � N sech��� exp�i�in�� the amplitude and
angle of the kth constituent soliton are given by �k �
2k� 1 and �k � �in (k � 1; . . . ; N), respectively. In the
absence of perturbations such a BS exhibits periodic
breathing and recovering of its initial shape upon propa-
gation. In the context of optical solitons different types of
perturbations, such as third-order group-velocity disper-
sion, stimulated Raman scattering, two photon absorp-
tion, cascading, or asymmetric spectral filtering, are
known to lead to the splitting of the BSs into the con-
stituent solitons [5]. The method we describe here, based
on the use of optical lattice, is extremely robust and
controllable. We show that the splitting can be controlled
by acting on two external parameters, namely, a phase tilt
imposed on the BS and, more importantly, the lattice
strength.

In Fig. 1 we show a few representative examples of the
typical decay of three-soliton bound states induced by the
periodic potential. The plots have been obtained for the
weak potential p � 0:05. As shown in Figs. 1(a) and 1(b),
for small values of p and small incident angles �in only
the soliton with the highest energy is trapped inside the
central waveguide, whereas the other ones move across
the periodic potential at constant angles. We found that
the trapping occurs only when the initial tilt is below a
critical value. For single solitons, the value of the critical
143902-2
tilt can be estimated analytically to find [6,8]
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This estimate was found to agree very well with the
numerical values (e.g., up to the 4th digit for � � 5, p �
0:05). Importantly, for weak lattices the amplitudes �k of
the output solitons arising after the splitting were always
found to almost coincide with the initial values hidden
inside the BS. When the outgoing solitons propagate
across the lattice, their amplitudes decrease slowly be-
cause of radiation. Detailed estimates of such small ra-
diation are given in Refs. [6]. Physically, the splitting is
caused by the different phase shifts acquired by the
several solitons contained in the unperturbed BSs
through their different scattering by the lattice and,
more importantly, by their mutual nonlinear interactions.
In the early stages of the evolution ��� 1�, the tilted
three-soliton BS starts a self-compression, followed by
reshaping into a twin-peak structure. Asymmetrical en-
ergy tunneling to the neighboring lattice sites finally
leads to the splitting and soliton escaping. Complex in-
teractions between the solitons may lead to repulsion;
hence solitons bounce back against the initial tilt, as
visible in Fig. 1.

Figure 1 shows that the escape angles of solitons can be
effectively controlled by varying the tilt �in. To further
explore this point we plotted in Fig. 2 the escape angles
�k versus the initial tilt �in for two- and three-soliton
BSs. The critical tilt beyond which the highest energy
soliton escapes from the central potential well is close to
143902-2



FIG. 3 (color online). Splitting of the three-soliton bound
state at �in � 0:1, when (a) p � 0:02 and (b) p � 0:2.
(c) Propagation angles of solitons arising upon splitting of a
three-soliton bound state vs lattice depth at �in � 0:1. The
soliton with amplitude �5 always stays in the central lattice
channel.

FIG. 4 (color online). Localization of single solitons pro-
duced by the splitting of a three-soliton bound state when
(a) �in � 0:08 and (b) �in � 0:66. Lattice depth p � 0:6.

FIG. 2 (color online). Propagation angles of solitons arising
upon splitting of bound states of (a) two and (b) three solitons
as a function of the incident angle. In (a) and (b) lattice depth
p � 0:05. (c) Field distribution at the distance � � 50 for a
soliton with amplitude �1 arising upon decay of the two-
soliton bound state when �in � 0:2, p � 0:05 (centered curve)
and p � 0:045 (shifted curve). The black curve in (d) corre-
sponds to that in (c), while the red curve shows field distribu-
tion for soliton arising upon decay of the bound state at
�in � 0:2, p � 0:05 in the presence of white noise with vari-
ance  2

noise � 0:01. Arrows in (c) and (d) show shift direction
for a soliton maximum position.

VOLUME 93, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S week ending
1 OCTOBER 2004
0.4 for N � 2 and 0.45 for N � 3. Large tilts make
solitons move closer to each other, whereas small ones
correspond to an ideal regime for soliton switching and
steering. Importantly, we found that the splitting process
is not sensitive against variations in the lattice strength or
against small random noise present in the complex profile
of the input BS [see Figs. 2(c) and 2(d)]. This indicates the
remarkable robustness of the eigenvalue control process
afforded by the lattice, as well as the feasibility of its
experimental observation.

Another important possibility for soliton splitting con-
trol is the possibility to tune lattice strength. It is illus-
trated in Figs. 3(a) and 3(b), which show the splitting of
BSs at a fixed initial tilt but for different lattice strengths.
As one can see from the plots, large variations of the
potential depth do not lead to qualitative changes in the
splitting dynamics. Figure 3(c) summarizes the point:
The escape angles of the solitons generated through the
splitting grow smoothly with the lattice strength. It is
remarkable that trajectories of escaping solitons remain
almost linear up to rather high values of the potential
depth p� 0:3.

On the one hand, the periodic potential induces the
breakup of the BSs into its constituents, but, on the other
143902-3
hand, it also provides a potential barrier for each soliton.
When such a potential barrier is high enough, it might
lead to trapping of the generated single solitons into a
specific channel of the lattice, thus providing a method to
harvest the product solitons for further manipulation. To
explore this phenomenon quantitatively, let a soliton be
trapped in the nth lattice channel when the coordinate �m

of its intensity maxima satisfies nT � T=2 � �m �
nT � T=2 at �! 1. In Fig. 4 we present the outcome
of an illustrative simulation for two different BS decay
scenarios in the deep potential p� 1. In this regime, the
decay of BS and the subsequent propagation of the pro-
duced single solitons are accompanied by considerable
radiation. The generated solitons might be trapped in
143902-3
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different lattice channels depending on the value of the
initial tilt. However, in this regime the process is highly
inelastic; thus the amplitudes of the output solitons may
depart considerably from the values �k � 2k� 1 carried
by the input BS. As in the case of small potential depth,
the soliton with the highest energy can no longer be
trapped in the central channel when the incident angle
exceeds a threshold value. Naturally, large tilts lead to
large radiative losses that affect drastically the soliton
amplitudes and make the trapping impossible. Also, for
deep enough potentials the annihilation or birth of new
solitons might occur. Radiative losses grow dramatically
when the tilt angle approaches the Bragg one, so reso-
nances with spectral bands become important [6].
However, such angles fall far above those considered
here. A detailed description of the Bragg scattering of
wave packets in periodic potentials in linear and non-
linear regimes can be found in Ref. [17], where it is shown
that scattering occurs in accordance with the contribu-
tions of different Bloch states into the spectrum of the
wave packet. The approach of Ref. [17] can potentially be
applied to scattering of BSs since those can be viewed as a
nonlinear combination of several single solitons.

A central motivation of this Letter is the implementa-
tion of the proposed scheme in one-dimensional Bose-
Einstein condensates trapped in optical lattices. Thus we
now discuss the feasibility of the method with currently
available technology. Creation of a multisoliton bound
state can be achieved in the following way. First, a single
standing bright soliton condensate has to be created in the
absence of the optical lattice. Such a soliton corresponds
to the ground state of the system for a certain (negative)
value of the scattering length. For instance, for a scatter-
ing length such that � � �1=4 the profile of such soliton
is given by ���� � 2 sech���. By then changing the
scattering length to � � �1 with the aid of Feshbach
resonances, ���� becomes a bound state of two solitons.
The optical lattice is then grown adiabatically. Using a
phase-imprinting technique [18], or tilting the optical
lattice in the gravitational field, one can imprint onto
the condensate wave function the desired linear phase.
All these steps are currently standard experimental tech-
niques. Notice that the creation of higher-order solitons in
BECs is discussed also in Ref. [19].

To summarize, we have proposed a mechanism for the
extraction and control of the multiple single solitons
carried by higher-amplitude initial conditions in systems
modeled by the nonlinear Schrödinger equations with
external linear periodic potentials. We discussed the phy-
sical implementation of the technique in optical Kerr
media and in Bose-Einstein condensates held in optical
lattices. For weak lattices, we showed that the lattice
strength and a phase tilt imprinted onto the initial con-
ditions enable extraction of all the ZS eigenvalues carried
by the input conditions. Such a splitting process is coher-
ent and leads to the generation of quantum correlated
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matter waves, a feature that might find applications in
the area of macroscopic coherent atomic ensembles [20].
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