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Prethermalization
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Prethermalization of the equation of state and the kinetic temperature to their equilibrium values
occurs on time scales dramatically shorter than the thermal equilibration time. This is a crucial
ingredient for the understanding of collisions of heavy nuclei or other nonequilibrium phenomena in
complex quantum and classical many body systems. We also compare the chemical equilibration time
with other characteristic time scales.
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Prethermalization is a universal far-from-equilibrium
phenomenon which describes the very rapid establish-
ment of an almost constant ratio of pressure over energy
density (equation of state), as well as a kinetic tempera-
ture based on average kinetic energy. The phenomenon
occurs on time scales dramatically shorter than the ther-
mal equilibration time. As a consequence, prethermalized
quantities approximately take on their final thermal val-
ues already at a time when the occupation numbers of
individual momentum modes still show strong deviations
from the late-time Bose-Einstein or Fermi-Dirac
distribution.

The abundance of experimental data on matter in ex-
treme conditions from relativistic heavy-ion collision ex-
periments, as well as applications in astrophysics and
cosmology urge a quantitative understanding of nonequi-
librium dynamics in quantum field theories. Collision
experiments seem to indicate early thermalization,
whereas the present theoretical understanding of QCD
suggests a much longer thermal equilibration time. For
example, the successful application of hydrodynamics
already less than 1 fm after the collision is so far un-
explained from theory [1].

To resolve these questions, it is important to understand
to what ‘‘degree’’ thermalization is required to explain
the observations. Different quantities effectively thermal-
ize on different time scales and a complete thermalization
of all quantities may not be necessary. For instance, an
approximately time-independent equation of state p �
p���, characterized by an almost fixed relation between
pressure p and energy density �, may form very early—
even though the system is still far from equilibrium. Such
an almost constant equation of state is a crucial ingre-
dient for the use of efficient hydrodynamic descriptions,
since it is needed to close the system of equations ob-
tained from the conservation of the energy momentum
tensor.

The initial stages of a collision require one to consider
quantum fields in extreme nonequilibrium situations.
Connecting this far-from-equilibrium dynamics at early
times with the approach to thermal equilibrium at late
times is a challenge for theory. Achieving this goal is
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crucial for a comparison between the time scales of
prethermalization and thermal equilibration, and we in-
vestigate this question here quantitatively in an effective
quark-meson model. Approaches based on small devia-
tions from equilibrium, or on a sufficient homogeneity in
time underlying kinetic descriptions, are not applicable to
describe the ‘‘link’’ between the initial and the late-time
behavior. Classical field theory approximations are ex-
pected to be valid for not too late times but cannot
determine the relevant time scale for the approach to
quantum thermal equilibrium. Recently, it has been dem-
onstrated [2–6] that far-from-equilibrium dynamics as
well as subsequent thermalization of quantum fields can
be described using efficient functional integral tech-
niques. The description includes direct scattering as
well as off-shell and memory effects. This is crucial to
establish the different time scales for a loss of memory of
initial conditions for certain ‘‘bulk quantities’’ as com-
pared to ‘‘mode quantities’’ characterizing the evolution
of individual momentum modes.

The observation that the nonequilibrium system looses
a major part of the memory of the detailed initial con-
ditions on a very short time scale is a robust feature of
classical as well as quantum field theories. It has been
observed [7] that approximate ‘‘equipartition’’ between
bulk kinetic and potential energy occurs very rapidly.
Below, this is the basis of our definition of a ‘‘kinetic
temperature’’ Tkin. We see that the equation of state be-
comes almost constant at the same ‘‘prethermalization
time’’ tpt. A rapid approach to a slow evolution of the
equation of state in classical field theories has also been
observed with expanding space-time geometries [8]. The
fast loss of memory for these quantities is based on the
phenomenon of ‘‘dephasing’’ [9], which is independent of
the interaction details. In contrast, ‘‘mode temperatures’’
(defined below) for individual momentum modes lose
only part of the initial condition details on a somewhat
longer time scale tdamp which depends on the interaction
strength [10]. Still, tdamp is much smaller than the true
thermal equilibration time teq which describes the univer-
sal rate of approach to the equilibrium values for all
relevant correlation functions [2,3,6]. An even substan-
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FIG. 1. Fermion occupation number n�f��t;p� for three differ-
ent momentum modes as a function of time. The evolution is
shown for two different initial conditions with the same energy
density. The long-time behavior is shown on a logarithmic scale
for t � 30 m	1.
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tially larger separation of scales is observed in classical
field theories [12–14] as compared [4] to the correspond-
ing quantum theories.

In this Letter we consider the nonequilibrium evolution
of quantum fields for a low-energy quark-meson model,
which takes into account two quark flavors with a Yukawa
coupling �h to a scalar � field and a triplet of pseudo-
scalar pions, ~	. The theory corresponds to the well-
known ‘‘linear � model,’’ which incorporates the chiral
symmetries of massless two-flavor QCD. The classical
action reads

S �
Z
d4x

�
� i@6  �

1

2
�@��@

��� @� ~	@
� ~	�

�h � ��� i�5 ~� ~	� 	 V��2 � 	2�

�
: (1)

We consider a quartic scalar self-interaction V��2�

	2��m2
0��

2�	2�=2����2�	2�2=�4!N2
f� with Nf � 2.

The employed couplings are taken to be of order 1, and if
not stated otherwise h � � � 1. We emphasize that the
main results of this Letter about prethermalization are
independent of the detailed values of the couplings. Here
we use the two-particle irreducible (2PI) effective action
to two-loop order [15]. In Ref. [6] it has been shown that
this approximation can be used to study the far-from-
equilibrium dynamics as well as the late-time approach to
quantum thermal equilibrium. The dynamics is solved
numerically without further approximations (cf. Ref. [6]
for calculational details). All quantities are given in units
of the scalar thermal mass m [16].

Thermalization.—Nonequilibrium dynamics requires
the specification of an initial state. Crucial questions of
thermalization are how quickly the nonequilibrium sys-
tem effectively looses the details about the initial con-
ditions, and what are the characteristic stages of a partial
loss of information. Thermal equilibrium keeps no mem-
ory about the time history except for the values of a few
conserved charges. In Fig. 1 we show the effective occu-
pation number density of fermion momentum modes,
n�f��t;p�, as a function of time for three different mo-
menta [17]. The plot shows two runs denoted as �A� and
�B� with different initial conditions but the same energy
density. Run �A� exhibits a high initial particle number
density in a narrow momentum range around 
p. This
situation is reminiscent of two colliding wave packets
with opposite and equal momentum. We emphasize, how-
ever, that we are considering a spatially homogeneous and
isotropic ensemble with a vanishing net charge density.
For run �B� an initial particle number density is employed
which is closer to a thermal distribution.

One observes that for a given momentum the mode
numbers of runs �A� and �B� approach each other at early
times. The characteristic time scale for this approach is
well described by the damping time tdamp�p� [18].
Irrespective of the initial distributions �A� or �B�, we find
(for p=m ’ 1) t�f�damp ’ 25 m	1 for fermions and t�s�damp ’
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28 m	1 for scalars. In contrast to the initial rapid changes,
one observes a rather slow or ‘‘quasistationary’’ subse-
quent evolution. The equilibration time teq ’ 95 m	1 is
substantially larger than tdamp and is approximately the
same for fermions and scalars. Thermal equilibration is a
collective phenomenon which is, in particular, rather
independent of the momentum. In summary, mode quan-
tities such as effective particle number distribution func-
tions show a characteristic two-stage loss of initial
conditions: after the damping time scale much of the
details about the initial conditions is effectively lost.
However, the system is still far from equilibrium and
thermalization happens on a much larger time scale.

We define mode temperatures T�f;s�
p �t� by equating the

mode particle numbers n�f;s�p �t� with a time and momen-
tum dependent Bose-Einstein or Fermi-Dirac distribu-
tion, respectively [6]:

np�t��
!
fexp�!p�t�=Tp�t�� 
 1g	1: (2)

This definition is a quantum mechanical version of its
classical counterpart as defined by the squared ‘‘general-

ized velocities’’ [7]. In thermal equilibrium with !p ’�������������������
p2 �M2

p
and Tp � Teq Eq. (2) yields the familiar occu-

pation numbers (� � 0). Here the mode frequency
!�f;s�
p �t� is determined by the peak of the spectral function

for a given time and momentum, as detailed in Ref. [6]. In
Fig. 2 we show the fermion and scalar mode temperature
as a function of momentum for various times t� tdamp.
One observes that at late times, when thermal equilibrium
is approached, all fermion and scalar mode temperatures
become constant and agree: T�f�

p �t� � T�s�
p �t� � Teq. In

contrast, there are sizable deviations from the thermal
result even for times considerably larger than the charac-
teristic damping time.

Kinetic prethermalization.—In contrast to the rather
long thermalization time, prethermalization sets in ex-
142002-2
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FIG. 2. Fermion and scalar mode temperatures T�f;s�
p �t� as a

function of momentum p for various times.
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tremely rapidly. In Fig. 3 we show the ratio of pressure
over energy density, w � p=�, as a function of time. One
observes that an almost time-independent equation of
state builds up very early, even though the system is still
far from equilibrium. The prethermalization time tpt is
here of the order of the characteristic inverse mass scale
m	1. This is a typical consequence of the loss of phase
information by summing over oscillating functions with a
sufficiently dense frequency spectrum. In order to see that
this phenomenon is not related to scattering or to the
strength of the interaction, we compare with a smaller
coupling in the inset and observe good agreement of both
curves. The dephasing phenomenon is unrelated to the
scattering-driven process of thermalization.

Given an equation of state, the question arises whether
there exists a suitable definition of a global kinetic tem-
perature Tkin. In contrast to a mode quantity such as Tp�t�,
a temperature measure which averages over all momen-
tum modes may prethermalize. Building on the classical
association of temperature with the mean kinetic energy
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FIG. 3. The ratio of pressure over energy density w as a
function of time. The inset shows the early stages for two
different couplings and demonstrates that the prethermaliza-
tion time is independent of the interaction details.
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per degree of freedom, we use here a definition based on
the total kinetic energy Ekin�t�:

Tkin�t� � Ekin�t�=ceq: (3)

Here the extensive dimensionless proportionality con-
stant ceq � Ekin;eq=Teq is given solely in terms of equilib-
rium quantities [19]. Since the total energy is conserved,
the time scale when equipartition is reached (i.e., Ekin=E
is approximately constant) also corresponds to a time-
independent kinetic temperature. The latter equals the
equilibrium temperature Teq if Ekin=E has reached the
thermal value.

The solid line of Fig. 4 shows Tkin�t� normalized to the
equilibrium temperature (for Teq=m � 1). One observes
that an almost time-independent kinetic temperature is
established after the short time scale tpt �m	1. The time
evolution of bulk quantities such as the ratio of pressure
over energy density w, or the kinetic temperature Tkin, is
dominated by a single short time scale. These quantities
approximately converge to the thermal equilibrium values
already at early times and can be used for an efficient
‘‘quasithermal’’ description in a far-from-equilibrium
situation.

Chemical equilibration.—In thermal equilibrium
the relative particle numbers of different species are
fixed in terms of temperature and particle masses. A
system has chemically equilibrated if these ratios are
reached, as observed for the hadron yields in heavy-
ion collisions [20]. Obviously, the chemical equili-
bration time tch depends on the details of the particle
number changing interactions in a given model and
tch � teq. In our model we can study the ratio between
the numbers of fermions and scalars. For this purpose
we introduce the chemical temperatures T�f;s�

ch �t� by equat-
ing the integrated number density of each species,
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FIG. 4. Chemical temperatures for scalars (upper curves) and
fermions (lower curves) for different values of the coupling h
and Teq. We also show the kinetic temperature Tkin�t� (solid
line), which prethermalizes on a very short time scale as
compared to chemical equilibration.
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n�f;s��t��g�f;s�
R
d3p=�2	�3n�f;s�p �t�, with the integrated

Bose-Einstein/Fermi-Dirac form of distributions:

n�t��
! g

2	2

Z 1

0
dpp2fexp�!p�t�=Tch�t�� 
 1g	1: (4)

Here g�f� � 8 counts the number of fermions and g�s� � 4
for the scalars.

The time evolution of the ratios T�s;f�
ch �t�=Teq is shown in

Fig. 4 for different values of the coupling constant h and
the equilibrium temperature Teq. One observes that
chemical equilibration with T�s�

ch �t� � T�f�
ch �t� does not hap-

pen on the prethermalization time scale, in contrast to the
behavior of Tkin�t�. Being bulk quantities, the scalar and
fermion chemical temperatures can approach each other
rather quickly at first. Subsequently, a slow evolution
towards equilibrium sets in. For the late-time chemical
equilibration we find for our model tch ’ teq. However, the
deviation from the thermal result can become relatively
small already for times t� teq.

Let us finally consider our findings in view of collisions
of heavy nuclei and try to estimate the prethermalization
time. Actually, tpt is rather independent of the details of
the model, such as particle content, values of couplings,
etc. It mainly reflects a characteristic frequency of the
initial oscillations. If the ‘‘temperature’’ (i.e., average
kinetic energy per mode) sets the relevant scale one
expects Ttpt � const. (For low T the scale is replaced by
the mass.) For our model we indeed find Ttpt ’ 2–2:5 [21].
We expect such a relation with a similar constant to hold
for the quark-gluon state very soon after the collision
[22]. For T * 400–500 MeV we obtain a very short pre-
thermalization time tpt of somewhat less than 1 fm. This is
consistent with very early hydrodynamic behavior [24].
In QCD the equilibrium equation of state shows no strong
temperature dependence above the critical temperature Tc

[25] and can therefore adapt easily as the temperature
decreases. After the transition w readjusts only somewhat
to the equilibrium value relevant for a hot hadron gas,
typically on a time scale of a few fm (for T ’ 175 MeV).
The chemical equilibration time tch depends on the pro-
duction rate for multistrange hadrons [26]. From tpt � tch
and Fig. 4 we conclude that once the chemical tempera-
tures for the various different species are equal the rele-
vant chemical temperature Tch coincides with Tkin and
defines a universal temperature. Comparison with the
critical temperature in equilibrium is therefore meaning-
ful—an approximate equality Tch ’ Tc has been advo-
cated [26]—such that chemical freeze-out can, in
principle, be used to measure Tc.

We thank J. Serreau for helpful discussions and col-
laboration on related work.
142002-4
[1] R. Rapp, J. Phys. G 30, S951 (2004), and references
therein.

[2] J. Berges and J. Cox, Phys. Lett. B 517, 369 (2001);
J. Berges, Nucl. Phys. A699, 847 (2002 ).

[3] F. Cooper, J. F. Dawson, and B. Mihaila, Phys. Rev. D 67,
056003 (2003); B. Mihaila, F. Cooper, and J. F. Dawson,
Phys. Rev. D 63, 096003 (2001).

[4] G. Aarts and J. Berges, Phys. Rev. Lett. 88, 041603
(2002).

[5] J. Berges and J. Serreau, Phys. Rev. Lett. 91, 111601
(2003).

[6] J. Berges, S. Borsanyi, and J. Serreau, Nucl. Phys. B660,
51 (2003).

[7] G. F. Bonini and C. Wetterich, Phys. Rev. D 60, 105026
(1999); G. Aarts, G. F. Bonini, and C. Wetterich, Phys.
Rev. D 63, 025012 (2001).

[8] S. Borsanyi, A. Patkos, and D. Sexty, Phys. Rev. D 68,
063512 (2003).

[9] F. Cooper, S. Habib, Y. Kluger, and E. Mottola, Phys. Rev.
D 55, 6471 (1997).

[10] This partial loss of memory can be related to approxi-
mate ‘‘fixed point’’ solutions for time evolution equations
of equal-time correlators [11].

[11] L. M. A. Bettencourt and C. Wetterich, Phys. Lett. B 430,
140 (1998).

[12] G. Aarts, G. F. Bonini, and C. Wetterich, Nucl. Phys.
B587, 403 (2000).

[13] S. Borsanyi and Z. Szep, Phys. Lett. B 508, 109
(2001).

[14] M. Salle, J. Smit, and J. C. Vink, Nucl. Phys. B625, 495
(2002).

[15] With the rescaling h! h=Nf this corresponds to a non-
perturbative expansion of the 2PI effective action to
next-to-leading order in Nf [2,6].

[16] The thermal mass m is evaluated in equilibrium. It is
found to prethermalize very rapidly. The employed mo-
mentum cutoff is �=m � 2:86.

[17] This quantity is directly related to the expectation value
of the vector component of the field commutator h� ; � �i
in Wigner coordinates and fulfills 0 � n�f��t;p� � 1 [6].

[18] The rate 1=tdamp�p� is determined by the spectral com-
ponent of the self-energy [6].

[19] For a relativistic plasma one has Ekin=N � �=n � $T.
As alternatives, one may consider the weighted average
�T�t� �

P
n�t;p�T�t;p�=

P
n�t;p�, where the sum is over

all modes, or a definition analogous to Eq. (4).
[20] P. Braun-Munzinger, K. Redlich, and J. Stachel, nucl-th/

0304013.
[21] We define tpt by jw�tpt� 	 weqj=weq < 0:2 for t > tpt.
[22] To establish this would require the application of similar

techniques to QCD [23].
[23] J. Berges, hep-ph/0401172.
[24] Future work should investigate isotropization of pressure.
[25] F. Karsch and E. Laermann, hep-lat/0305025.
[26] P. Braun-Munzinger, J. Stachel, and C. Wetterich, Phys.

Lett. B 596, 61 (2004).
142002-4


