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Universal Quantum Computation through Control of Spin-Orbit Coupling
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We propose a method for quantum computation which uses control of spin-orbit coupling in a linear
array of single electron quantum dots. Quantum gates are carried out by pulsing the exchange
interaction between neighboring electron spins, including the anisotropic corrections due to spin-orbit
coupling. Control over these corrections, even if limited, is sufficient for universal quantum compu-
tation over qubits encoded into pairs of electron spins. The number of voltage pulses required to carry
out either single-qubit rotations or controlled-NOT gates scales as the inverse of a dimensionless measure
of the degree of control of spin-orbit coupling.
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Several quantum computation schemes are based on
using the spin-1=2 degrees of freedom of electrons or
certain nuclei as qubits [1–3]. For example, in the pro-
posal of Loss and DiVincenzo [1], qubits are taken to be
spins of single electrons trapped in quantum dots. Here
we present a method for using spin-orbit coupling in such
a system to perform universal quantum computation.

In many spin-based quantum computation schemes
two-qubit gates are carried out by switching on and off
the exchange interaction between neighboring spins [4,5].
For perfectly isotropic exchange, these two-qubit gates
conserve total spin and so have too much symmetry to
form a universal set; i.e., they cannot be used to carry out
arbitrary unitary transformations on single-spin qubits.
A universal set can be realized if single-spin rotations are
possible [1], but it is generally believed these will be
harder to achieve than two-qubit gates. An attractive
alternative is to use an encoding scheme for which iso-
tropic exchange alone is universal [6]. This requires en-
coding logical qubits into three or more spins [7,8].

Spin-orbit coupling leads to anisotropic corrections to
the exchange interaction [9] which, under certain condi-
tions elaborated on below, retains a residual rotational
symmetry about a fixed axis. For many purposes these
corrections are innocuous. The resulting exchange gates
still form a universal set when combined with single-spin
rotations [10,11]. And, through a combination of pulse
shaping and locally defined spin quantization axes, they
can be made effectively isotropic, although in general
only to second order in spin-orbit coupling, so that
exchange-only encoding can be used [12,13].

The partial reduction in symmetry, from isotropic to
axial, can also simplify the requirements for universal
quantum computation. In [14] it was shown that the XY
interaction is universal for qubits encoded into only two
spins, provided there is a third ancillary spin for each
qubit. And in [15] it was shown that any axially symmet-
ric anisotropic corrections, when combined with single-
spin rotations about an axis perpendicular to the symme-
try axis of the exchange, can be used to construct a
universal set of gates for unencoded qubits.
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In this Letter we propose a new method for quantum
computation based on the ability to control the spin-orbit
induced anisotropic corrections to the exchange interac-
tion in a linear array of GaAs quantum dots. Our proposal
requires encoding logical qubits into pairs of neighboring
spins, similar to the encoding used in [16–18]. However,
unlike these proposals, which require an inhomogeneous
Zeeman field in addition to exchange, our proposal em-
ploys only the spin-orbit corrected exchange interaction.

Spin-orbit coupling is a relativistic effect which occurs
because an electron moving in an electric field experi-
ences a magnetic field which couples to its spin. In solids,
the k-dependent spin splitting due to spin-orbit coupling
is described by the Hamiltonian HSO � ��k� � S, where
k and S are, respectively, crystal momentum and spin.
Time-reversal symmetry implies ��k� � ����k�; thus
� � 0 only in the absence of inversion symmetry. For a
(001) two-dimensional electron gas (2DEG) in GaAs
there are two sources of inversion asymmetry contribut-
ing to �. Taking kx and ky to be along the [100] and [010]
crystal axes, respectively, the Dresselhaus contribution,
�D � fD��kx; ky; 0�, is due to the bulk inversion asym-
metry of the zinc blende structure of GaAs, with coupling
fD inversely proportional to the square of the width of
the 2DEG [19], and the Rashba contribution, �R �

fR�ky;�kx; 0�, is due to the structural inversion asymme-
try of the quantum well forming the 2DEG [20].

In the Hund-Mulliken description of two quantum dots,
one Wannier orbital is kept per dot. Let t denote the
tunneling amplitude between these orbitals in the absence
of spin-orbit coupling. The effect of HSO is to induce a
small spin precession during this tunneling. If the dots lie
in the (001) plane and are aligned in the [110] direction,
the precession axis is fixed to be along the �110� direction
[21]. The precession angle, 
, then satisfies
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where 
i is the Wannier state associated with dot i, and
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s �
fD � fR
a0!0

(2)

is a dimensionless measure of the strength of spin-orbit
coupling. Here a0 and !0 are, respectively, the linear size
and level spacing of a single isolated dot.

If the spin precession axis is fixed during gate opera-
tion, and the z axis in spin space is chosen to be parallel to
this axis, exchange gates in the presence of spin-orbit
coupling will have the form [11]

U12��;�;�; �� � e�i�H; (3)

where

H � S1 � S2 �
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Here � is the integrated strength of the dominant isotropic
part of the interaction, and the parameters �, �, and �
characterize deviations from perfect isotropy. The con-
stant �1=4 inH corresponds to a particular choice for the
overall phase of U which will be convenient in what
follows. For small s, � � C�s, � � C�s, and � � C�s2

[11]. C� and C� are both of order 1 and depend on the
shape and duration of the voltage pulse, though they
cannot in general be set to 0. For a generic pulse, C� is
also of order 1 but, because � is odd under time reversal, it
can be set to 0 by time-symmetric pulsing [12].

We envision two methods for controlling these aniso-
tropic corrections. One is to control the width and shape
of the potential confining the electrons to the 2DEG, thus
controlling fD and fR, and hence s. For fD � fR [22], s
can even be set to zero. The other is to control the
coefficientsC�,C�, andC� by pulse shaping, as described
above (see also [12]). Using these methods, it should be
possible to achieve a continuous range of gates of the
form (3), corresponding to small values of the parameter
s. To ensure approximate axial symmetry, we assume a
linear array of (001) quantum dots aligned along the
�110� direction, as shown in Fig. 1. Note that corrections
beyond Hund-Mulliken (i.e., involving more than one
orbital per dot) will lead to deviations from perfect axial
symmetry and will be a source of error. Here we assume
these corrections are small enough to be ignored.
[110]
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FIG. 1. Four quantum dots forming two neighboring logical
qubits, 12 and 34. The dots lie in the (001) plane and are aligned
along the [110] direction. The spin-orbit induced spin preces-
sion axis is parallel to the �110� direction. Exchange gates
between spins within a logical qubit are used for single-qubit
rotations. Two-qubit gates are carried out using exchange gates
acting on spins 2 and 3.
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Because of axial symmetry, the total Sz quantum num-
ber of this array will be conserved. It follows that the
gates (3) cannot form a universal set if single spins are
chosen to represent qubits. We therefore adopt the two-
spin encoding scheme of [16–18]. To describe this encod-
ing, we associate a pseudospin space with every nearest-
neighbor pair of spins i and i� 1 spanned by the states

jSii;i�1 �
1���
2

p �j"i#i�1i � j#i"i�1i�; (5)

jT0ii;i�1 �
1���
2

p �j"i#i�1i � j#i"i�1i�; (6)

where jSii;i�1 is pseudospin up and jT0ii;i�1 is pseudospin
down. The Hilbert space orthogonal to this pseudospin
space is then spanned by the states jT�ii;i�1 � j"i"i�1i and
jT�ii;i�1 � j#i#i�1i. Given our phase convention, the gates
(3) leave this space invariant,

Ui;i�1��;��jT�ii;i�1 � jT�ii;i�1; (7)

and so are entirely determined by their action on the
pseudospin space,

Ui;i�1��;�� � ei�=2e�i����i;i�1�=2: (8)

Here �����;�;��1� and the components of � � ��x;
�y; �z� are Pauli matrices, with the superscript �i; i� 1�
indicating that they act on the pseudospin space associ-
ated with spins i and i� 1. These gates then correspond
to pseudospin rotations through the angle
� � ��1� 2�� �2 � �2 � �2�1=2 � ��O�s2�; (9)

about an axis parallel to �.
In what follows we assume time-symmetric pulsing, so

that � � 0 for all gates. The available pseudospin rotation
axes will then lie in the yz plane. Allowing nonzero �
through time-asymmetric pulsing does not appreciably
simplify any of our constructions. Given the ability to
control the remaining anisotropic terms � and �, either
through direct control of s, or through pulse shaping,
there will be a continuous range of available rotation
axes. For a given rotation angle, �, these axes will sweep
out a wedge shape in the yz plane as shown in Fig. 2. The
degree of control of spin-orbit coupling is then charac-
terized by the angular size of this wedge, which we
denote  m. We expect that  m will depend weakly on �
and will be on the order of the largest possible value of jsj.
Note that the wedge of allowed rotation axes need not
include the z axis, corresponding to s � 0, although as
noted above it may be possible to achieve this through
cancellation of the Dresselhaus and Rashba contributions.

For logical qubits encoded into the pseudospin spaces
of dots i and i� 1, with i odd, and computational basis
states j0Lii;i�1 � jSii;i�1, and j1Lii;i�1 � jT0ii;i�1 (see
Fig. 1), we now show how pseudospin rotations can be
used to perform single-qubit rotations and controlled-NOT

(CNOT) gates, thus providing a universal set of quantum
gates [23].
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FIG. 2. Rotation axes in the pseudospin space of two neigh-
boring spins. The wedge lying in the plane perpendicular to x
and sweeping out the angle  m contains rotation axes which can
be achieved using time-symmetric pulses and control of spin-
orbit coupling. Successive # rotations about n̂1 and n̂2, with
n̂1 � n̂2 � cos , result in a 2 rotation about the x axis. The
effect of errors in the rotation angles, $1 and $2, on the net
rotation axis is also shown. Here ẑ0 k �n̂1 � n̂2� and ŷ0 � ẑ0 � x̂.
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Consider an arbitrary rotation about the x axis. This
operation can be performed by a sequence of # rotations
about available axes lying in the wedge. Figure 2 shows
two such axes, n1 and n2, making an angle  �  m. A #
rotation about n1 followed by a # rotation about n2 then
results in a 2 rotation about the x axis. The sense of this
rotation can be reversed by reversing the order of the #
rotations. Since a continuous range of axes within the
wedge is available, a rotation about the x axis through
an arbitrary angle 
 can be carried out by an even
number, 2�
=�2 m�� � 2, of # rotations, where �x� de-
notes the greatest integer function of x. The standard
Euler construction can then be used to generate arbitrary
single-qubit rotations, with the number of pulses required
growing as 1= m as  m goes to zero.

As  m is reduced, this construction also becomes in-
creasingly sensitive to errors. To see this, let the rotation
angles about n1�2� be #� $1�2�, where $1�2� are errors. If
we take the z0 axis to be parallel to n1 � n2 and the y0 axis
parallel to ẑ0 � x̂ then the composition of these two
rotations will yield an overall 2 �O�$2= � rotation
about an axis deviating from the x̂ axis by an angle $1 �
$2 in the y0 direction and �$1 � $2�=2 in z0 direction (see
Fig. 2). Thus, the larger  m is, the more robust this
construction is against errors.

Now consider the two logical qubits shown in Fig. 1. A
two-qubit gate between the 12 qubit and the 34 qubit can
be carried out by a sequence of pulses acting on spins 2
and 3. Because the pseudospin space of spins 2 and 3 does
not correspond to a logical qubit, rotations in this space
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will, in general, mix in noncomputational states resulting
in leakage errors. To avoid such errors, the net unitary
transformation must be diagonal in the f"1#2"3#4; "1#2#3"4;
#1"2"3#4; #1"2#3"4g basis of the four spins. The most general
unitary operator of the form (8) for which this is the case
consists of a rotation about the x axis in pseudospin space.
It follows that the net gate must be of the form

U23��;�� �
Y

k

U23��k;�k� � ei��=2�e�i��=2��
�2;3�
x ; (10)

where � �
P
k�k is the net phase and � is the rotation

angle about the x axis produced by the sequence of
rotations f�kg. Note that both � and � are defined mod-
ulo 4#.

The gate (10) can be expressed in terms of operators
acting on the logical qubits as follows:

U23��;�� � ei��=4�ei��=4��
�1;2�
x ��3;4�

x ei��=4��
�1;2�
x ei��=4��

�3;4�
x :

(11)

By casting this gate in its canonical form [24], it can be
shown to be equivalent to a CNOT gate, up to single-qubit
rotations, if and only if

� �
X

k

�k � �2n� 1�#: (12)

Below we outline two procedures for simultaneously
satisfying (10) and (12).

For the first procedure, let Rx�#� be a # rotation about
the x axis. Using the single-qubit rotation scheme de-
scribed above, this rotation can be performed through a
sequence of 2n � 2�#=�2 m�� � 2 rotations about avail-
able axes. If A��� is then a � rotation about a particular
available axis lying in the yz plane, the sequence of
rotations A���Rx�#�A��� will have the form (10) with
� � �2n� 1�# regardless of the value of �. According
to (9) the contribution of Rx�#� to the total phase � will
then be 2n#�', where'�O�s2= m� �O�s�. To satisfy
(12) we therefore require � � #=2�O�s�, where the
O�s� adjustment must be chosen so that � � #=2�'=2
for A��� and thus � � �2n� 1�#. This procedure is
similar to those proposed in the two-spin encoding
schemes of [15–18]. The main difference is that in these
constructions the Rx rotation is generated by an inhomo-
geneous Zeeman field, whereas in ours it is generated
entirely by a sequence of exchange gates corresponding
to# rotations in the wedge of available axes. Again, as  m
goes to zero, the number of required pulses scales as 1= m
and the construction becomes increasingly sensitive to
errors.

The second procedure requires more pulses in the limit
of small  m but is simpler and less susceptible to error.
The idea is to perform a sequence of 2# pseudospin
rotations about any available axis or axes and use the
spin-orbit induced mismatch between � and � to accrue
the extra # phase required to satisfy (12). The resulting
gate will then have the form (10) with � � 2n#, where n
140501-3
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FIG. 3. Proposed CNOT construction. Each line corresponds
to a logical qubit. U��;�� is defined in (10) with � � �2n�
1�#. The value of � depends on the procedure used to carry out
the CNOT. H � ��x � �z�=

���
2

p
is a Hadamard gate and Rx� � is

a single-qubit rotation about the x axis through an angle  
equal modulo 2# to �����=2.
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is the number of 2# rotations. According to (9), for the ith
rotation the corresponding phase factor will be �i �
2#� (i, where (i �O�s2�. For a sequence to satisfy the
constraint (12) the sum of all phases, and hence

P
i(i,

must be an odd multiple of #. Given control of spin-orbit
coupling, there will be a continuous range of achievable (
values for each 2# rotation, with (1 < (< (2, where
(1; (2 �O�s2�. If this range includes 0, then (12) can
always be satisfied with �#=(max� � 1 rotations, where
(max � max�j(1j; j(2j�. If this range does not include 0 it
will still always be possible to satisfy (12) with, at most,
�(max=�(2 � (1�� � 2� �#=(max� rotations.

Regardless of which procedure is used, single-qubit
gates acting on logical qubits 12 and 34 are required to
complete the CNOT construction. One procedure for doing
this is shown in Fig. 3.

Initialization can be performed by switching on the
interaction between pairs of spins forming logical qubits
and cooling. If s is set to 0 for this initialization, logical
qubits will equilibrate to j0Li. If s cannot be set to 0, they
will equilibrate to a state which can be rotated to j0Li.
Readout can be performed using a modified version of the
scheme proposed by Kane [2]. By switching on tunneling
between dots forming a logical qubit, and raising the
voltage of one dot so that it becomes doubly occupied if
and only if the final state is a singlet, the qubit measure-
ment can be converted to a charge measurement which
can be performed using a single electron transistor. If the
spin-orbit induced spin precession cannot be turned off
during this process, it will not correspond to a measure-
ment in the fj0Li; j1Lig basis, but rather a measurement
along a pseudospin axis nearly parallel to z. Again this
does not cause any fundamental problems.

To carry out fault tolerant quantum computation, it
must be possible to perform 105 gates within the spin
decoherence time, *s [25]. In GaAs quantum dots, with
pulse times of 1 ps [4] and *s � 10 's [26], we estimate
 m must be greater than 0.1 to do this. Given estimates of
the size of anisotropic exchange in GaAs [9], we believe
this is feasible.

To summarize, we propose a method for quantum
computation based on controlling the spin-orbit induced
140501-4
anisotropic corrections to the exchange interaction, with
the degree of control characterized by the parameter  m.
For two-spin encoding of logical qubits, single-qubit
rotations and CNOT gates can be carried out with the
number of pulses for each scaling as 1= m for small  m.
For this scheme to be useful it is clearly desirable to
design a system for which  m is as large as possible.
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