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Single Atom Transistor in a 1D Optical Lattice
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We propose a scheme utilizing a quantum interference phenomenon to switch the transport of atoms
in a 1D optical lattice through a site containing an impurity atom. The impurity represents a qubit
which in one spin state is transparent to the probe atoms, but in the other acts as a single atom mirror.
This allows a single-shot quantum nondemolition measurement of the qubit spin.
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FIG. 1 (color online). (a) A spin 1=2 impurity used as a
switch: in one spin state it is transparent to the probe atoms,
but in the other it acts as a single atom mirror.
(b) Implementation of the SATas a separately trapped impurity
q with probe atoms b in an optical lattice.
Coupling of a spin 1=2 system to bosonic and fermionic
modes is one of the fundamental building blocks of
quantum optics and solid state physics. Motivated by
the recent progress with cold atoms in 1D [1], we consider
a spin 1=2 atomic impurity which is used to switch the
transport of either a 1D Bose-Einstein condensate or a 1D
degenerate Fermi gas initially situated to one side of the
impurity. In one spin state the impurity is transparent to
the probe atoms, while in the other it acts as a single atom
mirror, prohibiting transport via a quantum interference
mechanism reminiscent of electromagnetically induced
transparency (EIT) [2] [Fig. 1(a)]. Observation of the
atomic current passing the impurity can then be used as
a quantum nondemolition (QND) measurement [3] of its
internal state, which can be seen to encode a qubit, j qi �
�j "i � �j #i. If a macroscopic number of atoms pass the
impurity, then the system will be in a macroscopic super-
position, j��t�i � �j"ij�"�t�i � �j#ij�#�t�i, which can
form the basis for a single-shot readout of the qubit
spin. Here, j���t�i denotes the state of the probe atoms
after evolution to time t, given that the qubit is in state �
[Fig. 1(a)]. In view of the analogy between state amplifi-
cation via this type of blocking mechanism and readout
with single electron transistors used in solid state systems
[4], we refer to this setup as a single atom transistor
(SAT).

We propose the implementation of a SAT using cold
atoms in 1D optical lattices [5–8]. We consider probe
atoms b to be loaded in the lattice to the left of a site
containing the impurity atom, which is trapped by a
separate (e.g., spin-dependent [8]) potential [Fig. 1(b)].
The passage of b atoms past the impurity q is then
governed by the spin-dependent effective collisional in-
teraction Ĥint �

P
�Ueff;�b̂

y
0 b̂0q̂

y
�q̂�. By making use of a

quantum interference mechanism, we engineer complete
blocking (effectively Ueff ! 1) for one spin state and
complete transmission (Ueff ! 0) for the other. Below we
first consider the detailed scattering processes involved in
the transport of a single particle through the SAT, and
then generalize this to interacting many-particle systems
including a 1D Tonks gas.
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The quantum interference mechanism needed to engi-
neer Ueff can be produced using an optical or magnetic
Feshbach resonance [9]. For the optical case a Raman
laser drives a transition on the impurity site 0 from the
atomic state b̂y0 q̂

y
�jvaci via an off-resonant excited mo-

lecular state to a bound molecular state back in the lowest
electronic manifold m̂y

�jvaci [Fig. 2(a)]. We denote the
effective two-photon Rabi frequency and detuning by ��
and ��, respectively. For the magnetic case, the
Hamiltonian will have the same form, but with �� the
coupling between open and closed channels and �� the
magnetic field detuning [9]. The Hamiltonian for our
system is then given ( �h � 1) by Ĥ � Ĥb � Ĥ0, with

Ĥb � 
J
X
hiji

b̂yi b̂j �
1

2
Ubb

X
j

b̂yj b̂j�b̂
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j b̂j 
 1�;
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X
�

����m̂
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�q̂�b̂0 � H:c:� � ��m̂

y
�m̂��

�
X
�

�Uqb;�b̂
y
0 q̂

y
�q̂�b̂0 �Ubm;�b̂

y
0 m̂

y
�m̂�b̂0�; (1)

where the operators b̂ obey the standard commutation
(anticommutation) relations for bosons (fermions). Ĥb
gives a Hubbard Hamiltonian for the b atoms with tun-
neling matrix elements J giving rise to a single Bloch
band with dispersion relation "�k� � 
2J coska (a is the
lattice spacing), and collisional interactions (which are
nonzero only for bosons) given by Ubb �

4� �h2abb
R
d3xjwj�x�j4=mb, where wj�x� is the Wannier

function for a particle localized on site j, abb is the
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FIG. 3 (color online). (a) SAT transmission coefficients T �
jf���j2 for a particle b as a function of its energy "�k� for
�=J � 4;� � 0; Uqb=J � 0 (solid line), �=J � 8;�=J �

4; Uqb=J � 2 (dashed line), �=J � 1;� � 0; Uqb=J � 2 (dot-
ted line), and �=J � 1;� � 0; Uqb=J � 0 (dash-dotted line).
(b) The number of particles to the right of the impurity, NR�t�,
from exact numerical calculations for bosons in the limit
Ubb=J ! 1 (dashed lines) and Fermions (solid lines) in a 1D
Mott insulator state with n � 1, for � � 0, �=J � 0; 1; 2.
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FIG. 2 (color online). (a) The optical Feshbach setup couples
the atomic state b̂y0 q̂

y
�jvaci (in a particular motional state

quantized by the trap) to a molecular bound state of the Born-
Oppenheimer potential, m̂y

�jvaci, with effective Rabi frequency
�� and detuning ��. (b) A single atom passes the impurity
(I ! III) via the two dressed states (II), j�i � b̂y0 q̂

y
�jvaci �

m̂y
�jvaci and j
i � b̂y0 q̂

y
�jvaci 
 m̂y

�jvaci and quantum inter-
ference gives rise to an effective tunneling rate Jeff;�.
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scattering length for b atoms and mb is their mass. Ĥ0

describes the additional dynamics due to the impurity on
site 0, where atoms b and q are converted to a molecular
state with effective Rabi frequency �� and detuning ��,
and the last two terms describe background interactions,
U��;� for two particles �;� 2 fq; b;mg, which are typi-
cally weak. This model is valid for U��; J;�;� � !,
where ! is the energy separation between Bloch bands.
Because the dynamics for the two spin channels q� can be
treated independently, in the following we will consider a
single spin channel, and drop the subscript �.

For off-resonant laser driving (� � j�j), the Feshbach
resonance enhances the interaction between b and q
atoms, giving the familiar result Ueff � Uqb 
�2=�.
However, for resonant driving (� � 0) the physical
mechanism changes, and the effective tunneling Jeff of
an atom b past the impurity [Fig. 2(b), I ! III] is blocked
by quantum interference. On the impurity site, laser
driving mixes the states b̂y0 q̂

yjvaci and myjvaci, forming
two dressed states with energies "���Uqb�=2��U2

qb=

4��2�1=2 [Fig. 2(b), II]. The two resulting paths for a
particle of energy " destructively interfere so that for
large ��J and Uqb�0, Jeff �
J2=�"���
J2=�"

��!0. This is analogous to the interference effect under-
lying EIT [2], and is equivalent to having an effective
interaction Ueff ! 1. In addition, if we choose � �

�2=Uqb, the paths constructively interfere, screening
the background interactions to produce perfect transmis-
sion (Ueff ! 0).

For a more detailed analysis, we solve the Lippmann-
Schwinger equation exactly for scattering from the im-
purity of an atom b with incident momentum k > 0 in the
lowest Bloch band. The resulting forwards and backwards
scattering amplitudes, f����k� respectively, are

f����k� �
�
1�

�
iaUeff�k�
v�k�

�
�1
�

1
; (2)

where the energy dependent interaction Ueff �

Uqb��2=�"�k�
�� and the phase velocity v�k��@"=
140408-2
@k�2Jasinka. The corresponding transmission proba-
bilities, T�k�� jf����k�j2, are plotted in Fig. 3(a) as a
function of "�k� for various � and �. For �� J, these
are Fano profiles with complete reflection at "�k� � � and
complete transmission at "�k���
�2=Uqb. The SAT
thus acts as an energy filter, which is widely tunable via
the laser strength and detuning used in the optical Fesh-
bach setup. For �> 4J, T is approximately independent
of k, and we recover the previous result, i.e., that transport
can be completely blocked or permitted by appropriate
selection of �. Note that this mechanism survives when
higher energy Bloch bands are included, and is resistant
to loss processes, which are discussed below.

We now consider the full many-body dynamics of N
probe atoms b initially prepared in the ground state in a
trap (box) of M lattice sites on the left side of the
impurity q. We are then interested in the expectation
value of the steady state coherent current Î � dN̂R=dt
[where N̂R �

P
j>0b̂

y
j b̂j is the number of particles on

the right side of the impurity; see Fig. 3(b)], which
depends on the laser parameters, the initial filling factor
on the left of the impurity, n � N=M, and, for bosons, the
interaction strength Ubb. We first consider the case of a
dilute or noninteracting gas, before treating both interact-
ing bosons and noninteracting fermions with arbitrary n.

For a dilute noninteracting Bose quasicondensate (n�
1; Ubb � 0), or for any very dilute gas (where the mo-
mentum distribution is very narrow), the behavior is very
similar to that of a single particle. If the gas is quickly
accelerated to a finite momentum k, e.g., by briefly tilting
the lattice, then the atoms will coherently tunnel through
the impurity according to the scattering amplitudes
f����k�. The resulting current I / Njf����k�j2v�k�, where
v�k� is the velocity of a Bloch wave with momentum k.

For a Fermi gas the equations of motion are linear and
may be solved exactly provided Ubm � Uqb. Scattering
from the impurity then occurs independently for each
particle in the initial Fermi sea, with scattering ampli-
140408-2
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FIG. 4 (color online). (a) The steady state current of b atoms
through the impurity as a function of the initial filling factor n
for � � 0 and �=J � 0; 1; 2. The solid lines show the analytic
result I0 for fermions, whereas the dashed lines show the exact
numerical result for hard-core bosons with Ubb=J ! 1. For
� � 0 these results are indistinguishable. (b),(c) The steady
state current as a function of the Rabi frequency �=J on
resonance � � 0 for (b) unit filling and (c) half filling. The
solid lines show the analytic result for fermions, whereas the
dashed (dotted) lines give numerical results for bosons with
Ubb=J � 20 (Ubb=J � 4).
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tudes f����k� for k � kF, where the Fermi momentum
kF � �n=a. After a short transient period, on the order
of the inverse tunneling rate 1=J, the system establishes a
roughly constant flux of particles through the impurity
[Fig. 3(b)], with a time-averaged current for resonant
driving � � 0 given by

I0 �
1

�a

Z 
2J�"F


2J
d"f�"�T�"�v�"�

�
J
�

�
V 


G� arctan VG


G2
�
V

�G
arctanh
VG�

G2

�V

�G2
� �G2


�=�G�G
�

�
; (3)

with "F the Fermi energy in the initial state, f�"� the
density of states per site (left of the impurity), 2G2

� �

�1��4=4J4�1=2 � 1 and V � "F=2J � 2sin2�n�=2�.
For a Tonks gas of strongly interacting bosons

(Ubb=J � 1 with n � 1) we expect to observe similar
behavior to that observed for fermions. In this limit,
double occupation of a site can be neglected, and the
behavior can be mapped onto fermionic particles via a
Jordan-Wigner transformation (JWT) [10]. The Hamil-
tonian is then the same up to a nonlinear phase factor
� ! ��
1�N̂R , which essentially causes � to change
sign when a particle passes the impurity. The contribution
of this phase factor should be small for weak coupling,
� � J, and also for strong coupling, where no particles
will tunnel through the impurity, i.e., NR ’ 0.

For the general case of many bosons we perform exact
numerical integration of the time dependent Schrödinger
equation for the Hamiltonian (1) using Vidal’s algorithm
for ‘‘slightly entangled quantum states’’ [11]. This algo-
rithm selects adaptively a decimated Hilbert space on
which a state is represented, by retaining at each time
step only those basis states that carry the greatest weight
in Schmidt decompositions taken from every possible
bipartite splitting of the system into two contiguous
parts. A sufficiently large decimated Hilbert space is
then selected so that the results of the simulations are
essentially exact. For each set of parameters we first
prepared the initial state via an imaginary time evolution
which found the ground state for atoms in a box trap on
the left of the impurity. Then, considering initially a
single impurity atom q on the site 0 and unoccupied sites
to the right of that site, we calculated the time evolution
of the system until it had reached a quasisteady state
behavior. In the simulations we obtained the behavior at
finite repulsion Ubb, and tested the effects of the non-
linear phase factor �
1�N̂R for strongly interacting bo-
sons, Ubb ! 1.

In Fig. 3(b) we plot the number of particles on the right
of the impurity NR�t� for fermions and for bosons with
Ubb=J ! 1, starting from a Mott insulator (MI) state
with n � 1, for � � 0, �=J � 0; 1; 2. For � � 0 the
results for bosons and fermions are identical, while for
�=J � 1; 2 we observe an initial period for the bosons in
which the current is similar to that for the fermionic
140408-3
systems, after which the bosons settle into a steady state
with a significantly smaller current. The initial transient
period for the bosons incorporates the settling to steady
state of firstly the molecule dynamics, and secondly the
momentum distribution on the right of the impurity.
These transients are suppressed if � is ramped slowly
to its final value from a large value �> 4J.

The dependence of the steady state current on the
initial filling factor n is depicted in Fig. 4(a) for resonant
driving with �=J � 0; 1; 2. For � � Uqb � Ubm � 0,
the current I0 � 2Jsin2�n�=2�=� is identical for fermi-
ons and hard-core bosons (Ubb ! 1), as we expect from
the exact correspondence given in this limit by the JWT.
For fermions with weak, resonant laser driving, the main
features of the Fano profile [Fig. 3(a)] are observed in
correspondence with the integral in (3). For example, a
plateau in I0�n� is observed near n� arccos�
�=2J�=��
1=2, as the Fermi energy is raised past "�� � 0, which
corresponds to the zero of the transmission probability
T�"�. Good agreement is also observed with the result for
bosons in this limit with n < 1=2, while for larger n
bosons are blocked better, with a factor of 2 to 3 in the
steady state currents.

The enhanced blocking for bosons is also seen in
Fig. 4(b) showing the steady state current against � for
resonant driving and n � 1. It is clear from these figures
together that this difference is a feature of the regime n >
1=2, �� J, which is directly linked to the phase factor of
�
1�NR arising in the JWT. As � is increased and fewer
particles pass the impurity, the results for fermions and
bosons again converge as expected. For small � there are
small differences between bosons with finite Ubb=J � 4
and Ubb=J ! 1, with currents always lower than the
equivalent fermionic current, owing largely to the smaller
mean squared momentum in the initial state. For large
driving � � 4J the basic interference process is ex-
140408-3
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FIG. 5 (color online). Exact numerical results showing the
propagation of N � 30 hard-core bosons in an initial MI state
(n � 1) through a SAT with (a)–(c) � � 0 and (d)–
(f) � � 0:5J, with � � Uqb � Ubm � 0. The plot shows
(a),(d) the momentum distribution, (b),(e) the five largest
eigenvalues )m of the single particle density matrix hb̂yi b̂ji,
and (c),(f) the spatial density of the largest eigenmode (the
quasicondensate) as a function of time. Darker colors represent
higher values.

VOLUME 93, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S week ending
1 OCTOBER 2004
tremely efficient for bosons and fermions, and we observe
complete blocking or transmission by quantum interfer-
ence for the proper choice of �.

In Fig. 5 we investigate the time evolution of 30 hard-
core bosons (Ubb ! 1) in an initial MI state, which are
released through a SAT which is switched at t � 0. For
� � 0, we see that as the gas expands the momentum
distribution becomes peaked as a quasicondensate is
formed with k � �=2a, which consists of a coherent
superposition of particles propagating to the right and
holes propagating to the left as the MI state melts [6]. This
mode grows outwards from the edge of the initial distri-
bution, and contains at its peak �

				
N

p
particles, as is

expected for such dynamically formed quasicondensates
in a 1D lattice [12]. In contrast, for �=J � 0:5, the
momentum distribution is broader, and the quasiconden-
sate mode contains many fewer particles. The mode also
consists of distinct branches, holes in the melting MI
propagating to the left and particles to the right, which
are initially coherent, but become decoupled at t� 12=J.
For larger � this behavior becomes more pronounced,
and for �> 4J the MI state essentially remains
unchanged.

The melting of a MI in this way can be used as the basis
for a convenient single-shot measurement of the spin state
of q. If q is in a superposition of spin states, only one of
which will permit transport of the b atoms, then after
some propagation time the system will be in a macro-
scopic superposition of distinct quantum phases (MI and
quasicondensates). These are distinguishable because if
the b atoms are released from the lattice, the quasicon-
densate will produce an interference pattern, whereas the
MI state will not. The visibility of the resulting pattern
can thus be used to measure the qubit spin.

A remarkable feature of the SAT is its resistance to both
two- and three-body loss processes on the impurity site.
140408-4
Spontaneous emissions from the off-resonant excited
molecular state in the case of an optical Feshbach reso-
nance amount to a two-body loss process at a rate �'2B in
the states j�i and j
i. These small rates are further
suppressed in the blocking regime J; '2B � �, with the
resulting decoherence rate 'dec / J2'2Bn=�2, with n the
mean site occupation of the b atoms. Collisions of atoms
b with molecules m [13] are strongly suppressed in the
Tonks gas regime, as well as for fermions. For a weakly
interacting Bose gas the corresponding three-body loss
rate, '3B, is again strongly suppressed in the blocking
regime (J; '3B � �) with 'dec / J4'3Bn2=�4.

Parallels may be drawn between the SAT and other
systems coupled to fermionic and bosonic modes. These
include the QND readout of a single photon in cavity-
quantum electrodynamics [14], electron counting statis-
tics [15], and the transport of electrons past impurities
such as quantum dots [16] (although there particles are
normally initially present on both sides of the impurity).
However, the long decoherence times for atoms in optical
lattices imply coherent transport over longer time scales
than is observed in these other systems, which are inher-
ently dissipative. In addition, blocking and/or energy
filtering by one or more SATs could be applied as tools
in the study of Bose and Fermi gases in a 1D lattice.
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