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Coherent Classical-Path Description of Deep Tunneling
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A central challenge to the semiclassical description of quantum mechanics is the quantum phenome-
non of ‘‘deep’’ tunneling. Here we show that real time classical trajectories suffice to account correctly
even for deep quantum tunneling, using a recently formulated semiclassical initial value representation
series of the quantum propagator and a prefactor free semiclassical propagator. Deep quantum tunneling
is effected through what we term as coherent classical paths which are composed of one or more classical
trajectories that lead from reactant to product but are discontinuous along the way. The end and initial
phase space points of consecutive classical trajectories contributing to the coherent path are close to each
other in the sense that the distance between them is weighted by a coherent state overlap matrix element.
Results are presented for thermal and energy dependent tunneling through a symmetric Eckart barrier.
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Tunneling is one of the most fascinating aspects of
quantum mechanics. A (Gaussian) wave packet, localized
initially on one side of a barrier with a mean energy and
an energy variance substantially smaller than the barrier
height is scattered off the barrier, but parts of it are
transmitted through the barrier. This is a classically dis-
allowed process; classical trajectories whose energy is
below the barrier will of course be reflected by it. Yet
the semiclassical description of quantum mechanics has
come up with a variety of beautiful scenarios for ‘‘ex-
plaining’’ quantum tunneling with the aid of classical
mechanics.

Perhaps the simplest approach is to represent the initial
wave packet in phase space through its Wigner transform
and then propagate it classically in time. The wave packet
will always have a tail whose energy is larger than the
barrier height. Classical trajectories initiated at these
phase space points will be transmitted since their energy
is above the barrier. The probability for such a trans-
mission is exponentially small and so one has a qualita-
tive description of tunneling via classical trajectories [1].
In fact, this classical path description of tunneling is exact
for a parabolic barrier. However, as noted by Maitra and
Heller [2], it will fail for ‘‘deep’’ tunneling. When the
barrier is not parabolic, or more specifically when it goes
to a constant value at plus or minus infinity, then
the classical path contribution becomes too small.
Tunneling is then dominated by nonclassical paths con-
necting two manifolds of classical trajectories lying close
to the separatrix between transmitted and reflected tra-
jectories. Kay [3] reanalyzed the tunneling problem and
showed that ‘‘good’’ estimates of the tunneling probabil-
ity may be obtained with single trajectories, provided that
one uses a SemiClassical Initial Value Representation
(SCIVR) of the propagator with coherent states that
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have a complex time dependent width. Grossmann has
recently shown [4] that an estimate of the tunneling
probability of similar quality to that of Kay may be
obtained by splitting the propagator into a product of
two equal time propagators and then estimating each
half time propagator using an SCIVR propagator. In his
computation, tunneling was effected through a combina-
tion of two classical trajectory segments. Burant and
Batista continued in this vein using time slicing of the
propagator [5].

An alternative description of tunneling is through use
of classical trajectories evolving on the upside down
potential energy surface. The tunneling process is then
envisaged as a classically allowed motion up to the bar-
rier, an imaginary time trajectory running through the
barrier, and then again a real time classical trajectory
leading from the turning point to the asymptotic region
[6]. This description necessitates the use of complex
trajectories.

A compromise between these two approaches has been
suggested by Ankerhold and Saltzer [7,8]. Tunneling is
effected by ‘‘large’’ fluctuations between families of pe-
riodic orbits. This description leads to a good estimation
of deep tunneling probabilities.

We will present here a perspective of deep tunneling,
which may be considered in some sense to include a
combination of Kay’s [3] and Grossmann’s [4] insights
to the problem. The path leading from reactants to prod-
ucts is composed of segments of classical trajectories. The
end point in phase space of one segment and the initial
point of the following segment are close to each other, as
determined by an overlap of coherent state matrix ele-
ments. We may thus describe deep tunneling as effected
by ‘‘coherent classical paths’’ leading from reactants to
products. The number of segments needed is a function of
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the depth of the tunneling: the deeper the tunneling, the
more segments one needs. In contrast to the previous
semiclassical approaches, the coherent classical path de-
scription presented here leads to the exact quantum tun-
neling probability. The methodology is also readily
applicable to systems with many degrees of freedom,
although here we will limit ourselves to one-dimensional
tunneling through a symmetric Eckart barrier V�q� �
V0cosh

�2 q
q0

with the Hamiltonian H � p2=2m� V�q�.
Our starting point is a prefactor free SCIVR of the

quantum propagator whose form is [9]:

K̂ 0�t� �
Z 1

�1

dpdq
2
 �h

e
i
�hS�p;q;t�jg�p; q; t�ihg�p; q; 0�j; (1)

and we use the ‘‘hat’’ notation to denote quantum opera-
tors. The coordinate representation of the coherent state at
time t is

hxjg�p; q; t�i �
�
	r�p; q; t�
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exp
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	�p; q; t�
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�
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where p�t�; q�t� are the classically evolved to time t
momentum and coordinate p and q. Since we are dealing
with a scattering problem in which much of the motion is
in the asymptotic region, we will choose the width pa-
rameter appropriate for a free particle, that is, 	�t� �

	
1�i �h	t with 	 as yet an arbitrary positive number and 	r
and 	i denote the real and imaginary parts of 	�t� re-
spectively. The action is S�p; q; t� �

R
t
0 dt

0
p�t
0�2

2m �eV
q�t0�� � �h2
2 	r�t

0�� and the coherent state averaged

potential is defined as eV
q�t�� � �	r�t�
 �1=2 R
1
�1 dxe

�	r�t�
x�q�t��2V�x�. This specific form of the
SCIVR propagator has the feature that on the average it
obeys the Heisenberg equation of motion at each point in
phase space and time [9]. At the initial time, it reduces to
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the identity operator and it is exact for free particle
motion. If the width parameter is chosen to be a constant
(	�p; q; t� � const) then the propagator given in Eq. (1) is
identical to Heller’s frozen Gaussian SCIVR propagator
[10].

The time evolution equation for the SCIVR propagator
is readily seen to be [11]

i �h
@K̂0

@t
� ĤK̂0 � Ĉ; (3)

where the correction operator is [9]

Ĉ�t� �
Z 1

�1

dpdq
2
 �h

�V�q̂; t�e
i
�hS�p;q;t�jg�p; q; t�ihg�p; q; 0�j;

(4)

and �V�q̂; t� � eV
q�t�� � V0
q�t��
q̂� q�t�� � V�q̂�. The
formal solution of the time evolution equation is [12]

K̂ 0�t� � K̂�t� �
1

i �h

Z t

0
dsK̂�t� s�Ĉ�s�; (5)

where K̂�t� is the exact quantum propagator which obeys
the equation of motion i �h @K̂

@t � Ĥ K̂ and K̂�0� � Î.
Expanding the exact propagator in a power series in the
correction operator gives the SCIVR series representation
of the exact propagator:

K̂�t� �
X1
j�0

K̂j�t�; K̂n�t� �
i
�h

Z t

0
dsK̂n�1�t� s�Ĉ�s�;

n �1: (6)

One then notes that, for example, the first order correction
K̂1�t� involves a trajectory evolving from time 0 to time s
and then a second trajectory evolving from the time s to
the time t. The final phase space point p�s�; q�s� of the first
segment is related to the initial phase space point of the
second segment �p0; q0� through the overlap
hg�p0; q0; 0�jg�p; q; s�i �
�
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q0�q�s��; (7)
demonstrating that the coherent state overlap forces the
final and initial points to be ‘‘close’’ to each other. In this
sense, the sum of the two trajectories gives a ‘‘coherent’’
path which evolves up to the time t. Clearly the nth term
in the SCIVR series revolves about a coherent path com-
posed of n� 1 coherent trajectory segments. In this way,
the exact propagator is decomposed into contributions of
coherent paths, whose number of discontinuities is related
to the order of the term in the series. From a practical
point of view, we shall show below that typically one need
not go beyond the first few terms in the SCIVR series to
obtain a very good description of the deep tunneling
process.
We first consider the thermal rate for transmission
through the symmetric Eckart barrier. The formal
expression for the rate is given in terms of the
eigenfunctions j��Fi of the symmetrized thermal flux
operator F̂�q�; �� � e��Ĥ=2 1

2m 
p̂��q̂� q�� � ��q̂�

q��p̂�e��Ĥ=2. Here q� is the location of the dividing
surface taken to be 0 for the symmetric Eckart barrier
and � � 1=kBT is the inverse temperature. The eigenval-
ues of the operator are �F; for explicit expressions in
terms of matrix elements of the Boltzman operator see,
for example, Ref. [13]. For our purposes, we note that the
flux eigenfunctions and eigenvalues are computed nu-
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merically accurately. The thermal tunneling factor (unity
in the classical high temperature limit but greater than
unity in the deep tunneling region) for the barrier trans-
mission probability is then defined as:

ß��� � 2
 �h�F
Z 1

0
dtCF�t�;

CF�t� �
	

��F

��������K̂y�t�F̂�qz; 0�K̂�t�
����������F

�

�



��F

��������K̂y�t�F̂�qz; 0�K̂�t�
����������F

�
:

(8)

where K̂�t� � e�i= �h�Ĥt� is the exact quantum real time
propagator and CF�t� is the thermal flux autocorrelation
function.

Using the same parameters for the Eckart barrier as
studied in Ref. [14], we plot in Fig. 1 the flux autocorre-
lation function for three different temperatures. The
width parameter 	 was chosen optimally by minimizing
the expectation value of the correction operator, as de-
scribed in Ref. [15]. Panel (a) compares the numerically
exact correlation function with the results obtained using
the zeroth and first order terms in the SCIVR series at the
(inverse) temperature �h�! � 4, which is well above the
crossover temperature ( �h�! � 2
) between thermal ac-
tivation and below barrier tunneling. The tunneling factor
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FIG. 1. The thermal flux autocorrelation function for an
Eckart barrier at three different temperatures. Panels (a)-(c)
correspond to the reduced inverse temperatures �h�! �
4; 10; 20, respectively. The notation for the various lines ap-
pears in the legend on the figure. For further details, see the
text.
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at this temperature is ß��� � 2:07 and so perhaps it is not
surprising that already the first order term converges to
the exact result. Panel (b) of the figure shows the flux
correlation function at a lower temperature �h�! � 10 for
which the tunneling factor is ß��� � 162. Panel (c) shows
the same but for very deep tunneling, the (inverse) tem-
perature is �h�! � 20 and the tunneling factor is ß��� �
5:34 108. Even for this deep tunneling case, deep in the
sense that the temperature is well below the crossover
temperature of �h�! � 2
, one sees that already the
second term in the SCIVR series converges to the exact
answer. As argued by Maitra and Heller, the zeroth order
term is insufficient to give the correct tunneling factor.
But adding in the coherent paths, which include one and
two jumps between classical paths suffices for an excel-
lent description of the tunneling dynamics. We note that
the results presented in Fig. 1 are a rather stringent test for
the SCIVR series method. Not only does the transmission
factor come out correct but so does the time dependent
flux correlation function.

It is also of interest to study the tunneling dynamics in
the energy domain. In Fig. 2, we plot the energy depen-
dent transmission probability for the same Eckart barrier.
The probability is obtained by Fourier transformation of
the time evolved thermal flux eigenfunction j��Fi whose
temperature was chosen to be �h�! � 4. The fact that the
zeroth order term gives probabilities which are greater
than unity should not be of any special concern. The
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FIG. 2. The energy dependent transmission probability for a
symmetric Eckart barrier. Panel (a) shows results on a linear
scale, panel (b) on a logarithmic scale. The notation for the
various lines appears in the legend on the figure. Note the
convergence to the numerically exact result even in the low
energy deep tunneling region.
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FIG. 3. Reflection and transmission of a Gaussian wave
packet incident on a symmetric Eckart barrier from the right.
The right panel of the figure shows the reflected wave packet,
the left panel the transmitted. Note the change of scale in the
amplitude for each panel. The notation of the lines appears in
the legend on the figure. For other details, see the text.
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SCIVR propagator is in general not a unitary operator.
What is important to note is that for almost the whole
energy range, it takes three terms in the SCIVR series to
converge to the exact result. At the lowest energy shown
(0.01 eV), the exact probability is 1:29 10�9. Results
based on the second, third and fourth order terms are
2:51 10�9; 1:40 10�9, and 1:31 10�9, respectively.
Since the second order term suffices for all other energies,
we do not plot the higher order results in Fig. 2. We also
stress that in all our computations, we have found that the
SCIVR series is well behaved and one does not find any
divergence when going to higher orders in the series.

Finally, in Fig. 3, we plot a time evolved Gaussian wave
packet whose initial energy was half the barrier height
(0.5 eV) and whose variance in space was 1.5 a.u., which
implies an energy variance of 0.029 eV. The wave packet
was initiated to the right of the barrier. Its fate after
scattering is shown in the figure. Most of it is reflected
as shown in the right panel. The amplitude of the trans-
mitted part, shown in the left panel, is much smaller (note
the change of scale in the figure). However, it takes only
four terms in the SCIVR series to obtain the correct
reflected and transmitted wave packet.

In summary, we have demonstrated that deep quantum
tunneling is well described in terms of coherent classical
paths which involve only real time classical trajectories.
Tunneling occurs through coherent classical paths, con-
sisting of a few trajectory segments related to each other
by coherent state overlap matrix elements. Interestingly,
140401-4
even deep tunneling does not necessitate more that a few
jumps in the path. We have employed a prefactor free
SCIVR of the propagator. One could repeat the same
computation using the Herman-Kluk propagator [16].
Past experience shows that this would lead to even faster
convergence of the SCIVR series [9]. In other words, the
number of trajectory segments needed to describe the
tunneling does depend on the SCIVR propagator used.
Since it is much more difficult to compute the Herman-
Kluk propagator in many dimensions because of the
prefactor, we limited ourselves here to the prefactor free
propagator. Although this Letter deals only with one-
dimensional tunneling, there is nothing in the SCIVR
series method that limits its dimensionality in principle,
and one should expect that the coherent classical path
picture presented here will remain valid also for multi-
dimensional tunneling problems.
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