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Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides
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We predict theoretically that surface plasmon polaritons propagating toward the tip of a tapered
plasmonic waveguide are slowed down and asymptotically stopped when they tend to the tip, never
actually reaching it (the travel time to the tip is logarithmically divergent). This phenomenon causes
accumulation of energy and giant local fields at the tip. There are various prospective applications in

nano-optics and nanotechnology.
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The recent explosive progress in nano-optics has been
based on the nanoscale local fields that are greatly en-
hanced due to resonant properties of metal nanosystems
[1-4]. Among many dramatic such phenomena and ap-
plications, we mention the giant surface-enhanced
Raman scattering (SERS) that allows for observation of
single molecules [5-8]. Surface plasmon polaritons
(SPP’s) in nanostructured systems enable one to observe
propagation, interference, and imaging on the nanoscale
[9-16]. The strong nanolocalized optical fields induce
many enhanced nonlinear-optical phenomena and have
various prospective applications. The central problem of
the nano-optics is the delivery and concentration (nano-
focusing) of the optical radiation energy on the nanoscale,
which is formidable because the wavelength of light is on
the microscale, many orders of magnitude too large.
Coupling laser radiation to the nanoscale through, e.g.,
tapered optical fibers [13] or by focusing on metal tips [7]
leads to an enormous loss: only a miniscule part of the
excitation energy is transferred to the nanoscale. Here we
show that it is possible to focus and concentrate in three
dimensions the optical radiation energy on the nanoscale
without major losses. This can be done by exciting the
surface plasmon polaritons (SPP’s) propagating toward a
tip of a tapered metal-nanowire surface-plasmonic wave-
guide. This propagation of SPP’s causes their rapid adia-
batic slowing down and asymptotic stopping. This
phenomenon leads to a giant concentration of energy on
the nanoscale. The SPP’s are adiabatically transformed
into localized surface plasmons (SP’s) that are purely
electric oscillations that can and do nanolocalize [17]
leading to the three-dimensional (3D) nanofocusing.

To introduce this phenomenon of the rapid adiabatic
nanofocusing in 3D, here we use the results of the actual
computations that will be presented later in this Letter. In
our example, the tapered nanoplasmonic waveguide is a
silver cone in vacuum,; its angle of opening is 0.04 rad, as
shown in Fig. 1(a). The vacuum reduced wavelength of
the excitation radiation is A = 100 nm, which corre-
sponds to red light of A = 630 nm. The SPP’s are effi-
ciently excited at the wide end of the waveguide nanowire
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by using, e.g., grating or Kretschman [16] geometry and
propagate to the tip as indicated. This propagation causes
accumulation of the SPP energy at the tip and the corre-
sponding increase of the local fields by more than 3 orders
of magnitude. As shown in Fig. 1(b), the intensity of the
local optical field is sharply concentrated in 3D in a
nanolayer at the surface of the metal, which is a signature
of SPP’s. In this figure, as everywhere in this Letter, we
show all lengths in units of A, so the sizes range from the
micro to nanoscale. The hot spot of local fields is created
in a nanosize region at the very tip. If it were not a
plasmonic nanowire waveguide, but the conventional ta-
pered optical fiber supporting guided photonic modes,
than there would be a cut off at some waveguide radius

(a)

Propagation direction 7

—
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FIG. 1 (color). (a) Geometry of the nanoplasmonic wave-
guide. The propagation direction of the SPP’s is indicated by
the arrow. Intensity I(r) = |E(r)|? of the local fields relative to
the excitation field is shown by color. The scale of the inten-
sities is indicated by the color bar in the center. (b) Local
electric field intensity I(r) is shown in the longitudinal cross
section of the system. The coordinates are indicated in the units
of the reduced radiation wavelength in vacuum, A = 100 nm.
The radius of the waveguide gradually decreases from 50 to
2 nm.
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beyond which the propagation is not possible [18]: the
wave is reflected back with only a short evanescent tail in
the forward direction; no field enhancement would occur,
and only an exponentially small part of the incident
energy would reach the tip.

It was suggested earlier [14] that the propation of SPP’s
toward the tip can produce energy concentration. It was
also noted [19] that at the cut-off point, the guided
photonic modes of an optical fiber could couple to the
plasmonic modes of its metal coating causing further
transfer of optical energy to the tip. However, no role of
the adiabatic slowing down and stopping of SPP’s was
previously elucidated. It is feasible that the observed [15]
high efficiency of a metal tip on aperture probe is due to
the proposed effect of the adiabatic accumulation.

The physical reason that the nanoplasmonic waveguide
is an efficient energy concentrator can be inferred from
Fig. 2(a). Both the phase and group velocity of SPP’s
asymptotically tend to zero toward the nanotip.
Consequently, the SPP’s are slowed down and adiabati-
cally stopped at z — 0, which leads to their accumulation
at the tip. Correspondingly, in Fig. 2(b) the local optical
field is oscillating in space with progressively decreasing
wavelength and its amplitude increasing by more than an
order of magnitude. The highest enhancement is in fact
limited only by the minimum tip size that can be consid-
ered on the basis of continuous electrodynamics.
Importantly, being adiabatic to prevent the back reflection
and 3D scattering, this process should be as rapid as
possible to prevent losses in the metal.

The theory considers a nanoplasmonic waveguide that
consists of a metal nanowire whose axis coincides with
the coordinate z axis and whose dielectric function &,,(w)
is uniform in space, where w is the optical excitation
frequency. The radius R(z) of this nanowire is a smooth
function of z and is assumed to decrease from microscale
for z large negative to a nanoscale size at z — 0, as
discussed above, see Fig. 1(a). This wire is surrounded
by a dielectric medium with dielectric constant g,. Using
the smoothness of dependence R(z), we will employ the
eikonal approximation [20] also called Wentzel-Kramers-

-100

FIG. 2 (color).  (a) Phase velocity v, group velocity v,, and
adiabatic parameter § (scaled by a factor of 10) are shown as
functions of the coordinate along the nanoplasmonic wave-
guide. (b) Radial optical electric field at the surface of the
metal-nanowire waveguide in the units of the excitation field
against the coordinate (in the propagation direction).
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Brillouin (WKB) or quasiclassical approximation in
quantum mechanics [21].

We consider an axially uniform SPP mode that is a TM
wave whose magnetic field has the ¢ polarization, and
electric field E has both transverse (radial) component E,
and longitudinal component E,. In the eikonal (WKB)
approximation, this field has the form

E (r, z, t) = Eo(r)A(z) expliky@(r) — iwt] (D

where r is a two-dimensional (2D) vector in the xy plane,
ko = 1/A, and A(z) is a slow-varying preexponential
factor, to be determined later in this Letter. From the
Maxwell equations, using the corresponding boundary
conditions at the interface, for the SPP guided mode,
we find the eikonal as ¢ = k, [ n(z)dz, where n(z) is the
effective surface index of the plasmonic waveguide at a
point z, which is determined by the equation

&m I (kok,,R)

g4 Ki(kokyR) 0 @)
Km 1o(kor,uR) ’

kg KolkoryR)

where I, and K, (p = 0,1 ) are the modified Bessel
functions; the complex decrements of the field in the

metal and dielectric are: k,, =+/n> — g, and k; =

\Jn?> — g,4. This equation determines n as a function of
the local wire radius R, which together with the grading
dependence R = R(z) defines the required effective index
n(z). Under the conventional plasmonic condition
Ree,, < —e,, Eq. (2) has nearly real solutions corre-
sponding to the propagating SPP’s. For a thick wire
(kgR > 1), the solution is, understandably, the same as
for the flat surface, n = \/e,,&,/(e,, + €4). For a thin,
nanoscale-radius wire (kgR < 1) with logarithmic preci-
sion, we have

R BT Y R, o
T M T

where y = 0.57721 is the Euler constant. Note that at the
tip n — o0, and SPP’s do asymptotically stop, i.e., both the
phase velocity v, =c/n and group velocity v, =
c[d(nw)/dw]™ ! tend to zero = kyR for koR — 0. The
point R =0 (or z = 0) is an essential singularity. The
time to reach this point * [n(R)dR « —In(kyR) — o0
diverges logarithmically. In this regard, the present one-
dimensional (1D) wire geometry principally differs from
the layered 2D geometry where the stopping of surface
plasmons occurs at a regular, finite point [22].

The eikonal parameter (also called WKB or adiabatic
parameter) is defined as 8 = |R'd(kon)~'/dR|, where
R' = dR/dz is the wire grading. For the applicability of
the eikonal (WKB) approximation, it necessary and suf-
ficient that 6 << 1. At the nanoscale tip of the wire, which
is the critical site for the adiabaticity (eikonal approxi-
mation applicability), from Eq. (3) we obtain
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Thus, 6 stays finite at the tip and can be made small
enough by choosing sufficiently small grading R’, so the
eikonal approximation is valid for the entire wire wave-
guide, including the stopping point at the tip. This con-
clusion does not rely or significantly depend on Img,, (the
optical losses in the system), in contrast with the two-
dimensional waveguides in Ref. [22].

Returning to our example, we consider a conic nano-
wire of silver with R’ = —0.02, see Fig. 1(a). In Fig. 2(a),
along with the phase velocity v, and group velocity v,,
we show also the adiabatic (WKB) parameter §. It is of
principal importance that this adiabatic parameter does
stay finite and small (6 = 0.07) throughout the entire
system, ensuring the global applicability of the eikonal
approximation, including the essentially singular point at
z=0.

The SPP electric fields are found from the Maxwell
equations in eikonal (WKB) approximation in the form:

E.(r,z) = (R — r)ly(kok,,r) + 6(r — R)BK(kokyr),

2) = O(R — r)i—1I,(kok,r)
K

m

+0(r — R)iKﬂBK1 (koK ar), 4)
d

where B = I(kok,,R)/Ko(kyk,,R), and 6(...) denotes the

Heaviside 6 function. To determine the preexponential

A(z) in Eg. (1), we use the energy flux conservation in

terms of the Pointing vector integrated over the normal

(xy) plane, obtaining

n*ey, z (R 2
A o Re[W Ko(kokR) ﬂ) I,(kok,,r) | rdr
n*s%’; 2 [ 2 -
+ I—z I()(k(]KmR) ‘ [ ‘ Kl(kOKdr) rdri| ’
K4l R

(&)

where all the spatially varying quantities, n, k,,, and «,
are functions of local radius R of the wire, as originally
given by Eq. (2). The required dependence A = A(z) is
obtained by substituting the grading relation R = R(z).
We indicate only the proportionality of A: the total scale
of A is undetermined by the equations and is defined by
the total power of the propagating SPP wave. This com-
pletes the eikonal (WKB) solution.

The intensity of the optical electric fields has already
been discussed in conjunction with Fig. 1 where they are
shown on the logarithmic scale. For this example and
below, we set the minimum radius of the wire to be
Ruin = 0.022 = 2 nm to avoid effects of the spatial dis-
persion of the dielectric response that are important at
shorter distances, cf. Refs. [23,24], and the maximum
radius (at z = —25A = —2.5u) to be R, = 0514 =
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50 nm. In Fig. 3, we display the amplitudes of the local
optical fields in the cross section of the system for the
normal and longitudinal (with respect to the to the axis)
components of the optical electric field. In Fig. 3, far from
the tip of the nanoplasmonic waveguide, the optical elec-
tric field is mostly transverse, extending in vacuum to
distances ~A where most of the SPP field is propagating.
The longitudinal field in the metal is very small, propor-
tional to a factor of |e,/¢,,| < 1, as should be from the
boundary conditions. Therefore, the guide itself is clearly
seen in panel (a) as the acute triangular region of low
fields. As SPP’s move toward the tip, the SPP fields start
to localize at the metal surface, and simultaneously, their
wavelength is progressively reducing and amplitude
growing. Because the very tip is not included, the singu-
larity point of the fields does not show in these figures.
Even with this truncation, the field magnitudes grow
significantly at small |z|. The transverse x component
grows by an order of magnitude as the SPP’s approach
the tip of the guide, while the longitudinal z component,
which is very small far from the tip, grows relatively
much stronger. Close to the tip, both these components are

Fofr,the same order of magnitude, as is expected for the
localized excitations. This growth in magnitude is con-
current with the energy localization in 3D and the sig-
nificant reduction of the wavelength, which are due to the
dramatic slowing down of the SPP’s. Note the SPP’s in
Fig. 3 are not standing but running waves; the fields
shown represent an instantaneous snapshot of these
waves.

In Fig. 4, we show the spatial behavior of relative
intensity I(r) and energy density [20] W(r) =
{dlwe(r, w)]/dw}|E|* of the local optical electric field.
The intensity grows by more than three and energy den-
sity by 4 orders of magnitude at the tip. If these fields were
used to induce SERS, it would be enhanced by seven to 8§
orders of magnitude. The further enhancement of SERS

FIG. 3 (color).  Snapshot of instanteneous fields (at some
arbitrary moment ¢ = 0): Normal component E, (a) and lon-
gitudinal component E, (b) of the local optical electric field are
shown in the longitudinal cross section (xz) plane of the system.
The fields are in the units of the far-zone (excitation) field.
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FIG. 4 (color). Mean (time averaged) intensity I(r) (a) and
the energy density W(r) (b) of the local optical electric field in
the xy plane of the system. The magnitudes are relative to those
of the excitation wave.

by many orders of magnitude can be achieved by posi-
tioning a resonant nanolens [25] at the tip of the nano-
plasmonic waveguide. Note that |E|? is concentrated at
the outer surface of the metal nanowire, with the expo-
nential decay far from this surface. In contrast, a metal
nanoparticle excited by an external field would produce
dipolar local fields where |E|? « 7. At the same time,
I(r) is significantly larger and localized inside the metal
plasmonic waveguide where most of the SPP energy is
propagating due to the large value of d[we(r, w)]/dw for
metals.

To briefly conclude, we introduce a phenomenon of
rapid adiabatic nanofocusing in 3D. This phenomenon is
at the foundation of the proposed high-efficiency cou-
pling of the far-field radiation to the near-field zone where
the 3D energy concentration occurs at the tip of a
smoothly tapered metal nanoplasmonic waveguide. This
causes the local field increase by 3 orders of magnitude in
intensity and four orders in energy density. The stopping
of SPP’s is asymptotic, i.e., they need logarithmically
divergent time to reach the tip, which mathematically is
the point of an essential singularity. Similar phenomena
are likely to exist for a hollow tapered waveguides, in
particular, subwavelength holes; this is of interest for the
enhanced transmission phenomena [26]. The rapid adia-
batic nanofocusing promises to find various applications
in nano-optics and nanotechnology where greatly en-
hanced local optical fields are required, in particular,
for probing, spectroscopy, detection, and modification
on the nanoscale in physics, chemistry, biology, electrical
engineering, etc.
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