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Single-Electron Tunneling with Strong Mechanical Feedback
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A harmonic nanomechanical oscillator with a high quality factor weakly coupled to a single-
electron tunneling device can provide a strong feedback for electron transport. Strong feedback occurs
in a narrow voltage range just above the Coulomb blockade threshold. In this regime, current is strongly
modified and current noise is drastically enhanced compared to the Schottky value.
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FIG. 1. SET device with strong mechanical feedback.
(a) Electric circuit characterizing SET. (b) The equilibrium
position of the oscillator depends on the charge state, providing
weak (� � 1) coupling. (c) Coulomb diamonds of the SET
device. Strong feedback regime is expected close to the
Coulomb blockade threshold. Our results concern the areas
marked with arrows.
Single-electron tunneling (SET) [1] has been observed
in a variety of meso and nanodevices. Because of
Coulomb blockade, the current at zero temperature van-
ishes below certain energy threshold. The threshold value
can be tuned by both bias and gate voltages, and this has
been widely applied in many experiments. The current
above the threshold jumps if electrons tunnel to/from
discrete energy levels and rises continuously if the dis-
creteness of the energy spectrum is not resolved.

Recently, SET has been combined with nanomechan-
ical oscillators, resulting in a new class of nanoelectro-
mechanical systems (NEMS) [2]. Transport experiments
with single oscillating molecules [3], suspended semicon-
ductor beams [4] and carbon nanotubes [5] clearly dem-
onstrate the influence of mechanical degrees of freedom
on current in SET regime.

Theoretical models of NEMS elucidate the coupling of
mechanical degrees of freedom to electron tunneling.
This coupling comes from the dependence of either tun-
neling matrix elements [6–9] or electron energy
[7,8,10,11] on the position x of the mechanical oscillator.
We stress that in either case this coupling is generally
weak. It can be quantified by a dimensionless constant
� � 1, which represents either the ratio of probabilities
to tunnel with and without emission of an oscillator
quantum, or the relative shift of the oscillator energy
�h!0 resulting from a single tunneling event. The fact
that � is small is well-known from solid state physics
and guarantees the separation of electronic and mechani-
cal degrees of freedom. This separation persists in equi-
librium properties of NEMS [12,13]. As shown in
Refs. [6,7], strong coupling leading to electromechanical
instability may only occur if mechanical stiffness of the
oscillator is negligible.

It is intuitively clear that in a nonequilibrium system
even weak coupling can become relevant. For both
mechanisms of coupling, stochastic tunneling of elec-
trons produces a stochastic driving force acting on the
oscillator. If the quality factor Q of the oscillator is
sufficiently high, this weak force can still swing the
oscillator to amplitudes exceeding quantum values.
Since the coupling is weak, this does not yet imply that
this large amplitude would in its turn significantly affect
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tunneling. Can one have strong mechanical feedback in
NEMS with weak coupling? This question has not been
answered yet, with literature mainly concentrating on
effects perturbative in weak coupling.

In this Letter, we show that the strong feedback regime
occurs in a well-defined region right above the Coulomb
blockade threshold provided that the quality factor is
sufficiently high. The current in this region is modified
by mechanical oscillations by a value of the order of the
current itself. The most pronounced signature of this
regime is the giant enhancement of the current noise as
compared to the Schottky value–a fundamental noise
scale in nanostructures [14].

Let us preface the quantitative discussion with quali-
tative arguments. The SET device can be in different
charge states (see Fig. 1). In close vicinity of the
Coulomb threshold, only two of these states (’’0’’ and
‘‘1’’) are relevant. We consider a mechanical oscillator
with frequency !0, mass M, and quality factor Q � 1.
The equilibrium position of the oscillator depends on the
charge state of the SET device, providing the coupling
between charges and the oscillator. We characterize the
coupling by an extra force F exerted on the oscillator in
charge state ‘‘1’’. This coupling is weak, so that the
dimensionless parameter � � F2= �hM!3

0 � 1. This guar-
antees that the equilibrium properties of the system are
only slightly affected by the coupling. Let us now con-
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sider tunneling events that switch the charge states with
the rate �. Since the force is different in different states,
this results in a force in the form of a random telegraph
signal acting on the oscillator. It is convenient to assume
that (i) this force is classical and (ii) there are many
tunneling events during the oscillation period, !0 & �.
The random kicks result in a net energy transfer to the
oscillator, dE=dt ’ F2=M� ’ � �h!3

0=�. The energy bal-
ance between dissipation and this transfer gives dE=dt �
E!0=Q, yielding a typical energy accumulated in the
oscillator, E ’ QF2=M�!0 ’ �h!0Q��!0=��. At high
Q, the amplitude of the resulting oscillations, � ��������������������
2E=M!2

0

q
can reach arbitrary high values. The applica-

bility of this classical estimation requires E � �h!0, so
that Q � �=�!0��.

The tunneling rate is a function of the energy differ-
ence W available for tunneling. This energy difference is
affected by the position x of the oscillator, W ! W 	 Fx.
This implies that the amplitude excited by the random
force gives a strong feedback on the tunneling within the

region defined by W & Wc ’ F� ’ �F2=M�
����������������
Q=�!3

0

q
’

�h!0�
����������������
Q!0=�

p
. Here, the classical reasoning works pro-

vided Wc � �h!0, so that Q � �=�!0�2�. This restriction
on Q is stronger than the previous one. To prevent thermal
smearing of the strong feedback region, the electron
temperature should satisfy kBT & Wc.

In this region, oscillations modify the current by a
value of order of the average current itself, I ’ e�. It is
crucial to note that the amplitude of the oscillations
fluctuates at the time scale set by damping Q=!0, the
longest relevant time scale. The current noise in the strong
feedback region is thus estimated to be S ’ I2Q=!0 ’
eI�Q�=!0�, which is much bigger than the Schottky
value S ’ 2eI outside this region [15].

Let us move to the quantitative description. For an
example model, we refer the reader to Ref. [12] where
the energetics of a suspended carbon nanotube have been
studied in detail by means of theory of elasticity and
orthodox Coulomb blockade theory. We restrict ourselves
to two charge states n � 0; 1, thus concentrating on the
vicinity of the Coulomb blockade threshold (implying
Wc � EC), and one oscillator mode !0. In this form,
the description becomes generic for any NEMS in the
SET regime.

In the classical limit we consider, the state of the
system is fully described by the joint distribution function
Pn�x; v; t�, with x and v being the position and velocity of
the oscillator (see, e.g., Refs [15,16] ). This distribution
function obeys the following master equation,

@Pn

@t



�
v
@
@x



@
@v

F

M

�
Pn 	 St�P� � 0; (1)

F � 	M!2
0x	

M!0v
Q


 Fn; (2)
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S t�P� � �2n	 1���0!1�x�P0 	 �1!0�x�P1�: (3)

The total force F acting on the oscillator is the sum of the
elastic force, friction force, and charge-dependent cou-
pling force, respective to the order of terms in Eq. (2). We
count the position of the oscillator from its equilibrium
position in the n � 0 state. In this case, Fn � nF.

The ‘‘collision integral’’ St�P�describes tunneling. The
rates �0!1��1!0� correspond to tunneling to (from) the
Coulomb island. Each of these rates is composed of the
rates of tunneling via left and right junctions, � � �L 

�R. The position dependence of the rates is assumed to be
due to a position dependence of energy differences avail-
able for each tunneling process [1,12]. This is valid if the
typical energy difference W is sufficiently large, W �
�h!0. This position dependence is given by

W0!1
L;R � 	W1!0

L;R � Wch;0!1
L;R 	 Fx;

where Wch
L;R are determined by electrostatic energy only

and are given by standard ‘‘orthodox’’ expressions. In the
limit of vanishing electron temperature, the rates are
given by ��W� � � �	W� for tunneling via a single level
and by ��W� � �e2R�	1�	W� �	W� for continuous
spectrum of electron states in the island. Here, the
L;R; 0 ! 1; 1 ! 0 indices are omitted for brevity,
�L;R�RL;R� are tunnel rates (resistances) characterizing
corresponding junctions.

Close to the Coulomb threshold electrons always tunnel
in one direction (for concreteness, from the left to the
right), and the slow dependence ofF and �R�W�x�� on bias
and gate voltages and position can be safely disregarded.
The voltage and position dependence of �0!1

L ;�1!0
L re-

mains essential and is given by

W0!1
L  ~W 	 Fx;

where ~W � Wch;0!1
L determines the energy difference to

the Coulomb threshold, depends linearly on both gate and
bias voltages with standard capacitance-dependent coef-
ficients, and is positive (negative) above (below) the
threshold.

We now simplify and solve Eq. (1). There are three
distinct frequency scales: the inverse damping time
!0=Q, the oscillation frequency !0, and the total tunnel-
ing rate �t � �0!1 
 �1!0. We make use of the fact that
!0=Q � !0 � �t. The latter condition implies the adia-
batic limit: x varies so slowly that ��x� hardly changes
between two tunneling events. This also means that many
tunneling events occur during one period of the oscilla-
tions. Mathematically, it implies that for the ‘‘collision
term’’ to be of the same order as the rest of the terms in
Eq. (1) the distribution function should have the form

P0�x; v; t� �
�1!0

�t
P�x; v; t� 	 !P�x; v; t�;

P1�x; v; t� �
�0!1

�t
P�x; v; t� 
 !P�x; v; t�;

(4)
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FIG. 2. Current (bold line) and noise (thin line) in the strong
feedback regime for the tunneling via a single level display
scaling: Rescaled current I=Ic and noise S=Sc (Sc � 4I2cQ=!0)
are universal functions of the rescaled voltage. Dashed line
gives the current in the absence of feedback.
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with !P � P. This allows for a regular expansion of !P
in terms of !0=�t,

!P � 	
F
M

�0!1�1!0

�3
t

@P
@v


O�!2=�2
t �:

Taking the sum of Eqs. (1), we arrive to the Fokker-
Planck equation for the function P,�
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Q
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P (5)

� 	
~F�x�
M

@P
@v


D�x�
@P

@v2 ;

where we keep in the right-hand side the terms of zeroth
and first order in !0=�t. The first term presents the effect
of the average force ~F � F�0!1=�t, and it has been dis-
cussed in Ref. [6]. The effect of this term is a rather trivial
one: Since ~F is a function of coordinates only, it can be
included into the oscillator potential energy, and just
renormalizes the elastic force M!2

0x. In the model con-
sidered, this renormalization is small provided that � �
F=M!2

0 and in any case does not lead to qualitatively new
effects. We thus disregard this term in further considera-
tion. It is the second term that describes the swinging of
the oscillator by the stochastic time-dependent force. It
may be seen as Brownian motion in velocity space char-
acterized by the ‘‘diffusion coefficient’’

D�x� �
F2

M2

�0!1�1!0

�3
t

:

In the underdamped limit Q � 1 the energy of the oscil-
lator E is a slow variable varying at the time scale Q=!0

much longer than the oscillation period. We parameterize
x and v by E and the oscillation phase  ,

x �
1

!0

������
2E
M

s
sin ; v �

������
2E
M

s
cos ;

and notice that the scale separation implies that P�E;  � 
P�E�. Averaging Eq. (5) over  , we obtain the following
equation for P�E�,

@P
@t

� L̂P; L̂ �
@
@E

E
	
!0

Q

 2MD1�E�
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; (6)

with

D1�E� �
1

2$

Z 2$

0
d cos2 D�x�:

The stationary solution of Eq. (6) assumes the form

P�E� � A exp
�
	

!0

2QM

Z E

0

dE0

D1�E0�

�
; (7)

A being a normalization constant. The average electric
current is evaluated with this distribution function,
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I � e
Z
dxdv��0!1

L P0 	 �1!0
L P1� (8)

�
Z 1

0
dEI�E�P�E�; I�E� � e

Z d 
2$

�0!1
L �1!0

R

�t
:

We now consider current noise. Mechanical noise due
to electron transfer [17] and modification of electron
noise by mechanical motion [9,11,16] are small by virtue
of weak coupling if the correlation time of electron trans-
fers is just a typical time between the transfers, like in
shot noise. In the regime we consider, the noise is en-
hanced by the coupling to a slow degree of freedom— the
oscillator. This provides current correlations at a much
longer time scale Q=!0. Indeed, the current essentially
depends on the energy E accumulated in the oscillator, the
latter fluctuating at this time scale.

To quantify this contribution to the current noise, we
notice that the time-dependent Fokker-Planck Eq. (6) is
suitable for evaluating temporal correlations of any func-
tions of E. Using the definition of low-frequency current
noise, we obtain

S=4 �
Z 1

0
dthhI�t�I�0�ii

� 	
Z 1

0
dE�I�E� 	 I�L̂	1

�I�E� 	 I�P�E�: (9)

The scale of the current noise is thus �!I�2Q=!0, !I being
the E-dependent part of the current. In the strong feed-
back regime, !I ’ I, and the contribution exceeds by far
the typical shot noise values.

It is clear from the above qualitative discussion, that
the current and noise must depend on one parameter
only–the rescaled energy distance from the Coulomb
blockade threshold ~W=Wc. This is of course confirmed
by the quantitative treatment. We present the results for
two cases–one discrete level and continuous spectrum–in
Fig. 2 and 3, respectively. In both cases, there is no current
below the threshold, ~W < 0. This is because the SET
device remains in the state ‘‘0’’ with no current, so that
there is no stochastic force to swing the oscillator, D1

vanishes at low energies, and P�E� is concentrated at zero
136802-3
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FIG. 3. Rescaled current and noise in the strong feedback
regime for the tunneling via continuous spectrum. Bold curve
is the difference !I between the actual current and ~W=eRL, the
current in the absence of feedback. Thin curve shows noise
(Sc � 4�Wc=eRL�

2Q=!0).
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energy. Above the threshold, current and noise are not
zero and strongly modified by the motion of the oscillator.
Whereas the current at ~W � Wc approaches the asymp-
totics in the absence of mechanical mode, the noise just
vanishes at this scale approaching the much smaller shot
noise values.

For the case of a single level, the voltage scale Wc reads

Wsingle
c �

����������������
Q�L�R

!3
0�

3
t

s
F2

M
� �h!0�

����������������������
Q�L�R!0

�3
t

s
: (10)

The current jumps at the threshold to the value Ic=2 �
e�L�R=�t, which is half of the jump it would do without
coupling to the mechanical mode, and then approaches
smoothly the value Ic (Fig. 2). Thus, in this case the
motion of the oscillator suppresses the current –since
during a part of the oscillation period the SET device is
not operational–and broadens the upper half of the step.
The noise is zero at the threshold, peaks around 0:5Wc,
and vanishes when the current is saturated.

For continuous spectrum, the smallest rate �L linearly
increases with energy, and �L � �R  �t. To determine
the scale Wc, we substitute �L � �e2RL�

	1Wc in Eq. (10)
to obtain

Wcontin
c �

4QF4

M2�2
t !

3
0e

2RL
� 4 �h!0�2

�
!0

�t

�
2
�

�h

e2RL

�
:

The current jump at the threshold equals Wc=�eRL3$
2�,

and for ~W � Wc the current approaches from above the
asymptotic value ~W=eRL: The one without coupling to
the oscillator. Therefore, in this situation mechanical
motion enhances the current. The noise jumps at the
threshold, develops a broad peak of approximately 
1:2 times the value of the jump, and slowly vanishes.

For numerical estimates, we take � � 0:1, which is
typical for NEMS. In suspended carbon nanotubes [12],
taking !0 � 109 Hz and � � 1010 Hz, we find that the
values Wc � 10' eV and Wc � 1 meV correspond to
Q � 105 and Q � 109, respectively. In single molecular
transistors, !0 � 1011 Hz. Taking � � 1012 Hz to stay in
the regime !0 � �, we find that Q needed to achieve
these values of Wc are, respectively, 10 and 105. In experi-
136802-4
ments, at low-frequency also background charge noise is
present which is set-up dependent and may in some
situations dominate. However, this background noise
does not depend on voltage on the scale of Wc, which
facilitates the observation of the current noise we discuss.

To conclude, we identify the regime of strong mechani-
cal feedback in SET-based NEMS. This regime in the
limit of weak coupling occurs in the close vicinity of the
Coulomb blockade threshold and is characterized by a
strongly modified current and parametrically big current
noise. Both current and noise display universal scaling
dependence in this regime.
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