
VOLUME 93, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S week ending
24 SEPTEMBER 2004
Asymmetric Quantum Shot Noise in Quantum Dots
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We analyze the frequency-dependent noise of a current through a quantum dot which is coupled to
Fermi leads and which is in the Coulomb blockade regime. We show that the asymmetric shot noise, as a
function of detection frequency, shows steps and becomes super-Poissonian. This provides experimental
access to the quantum fluctuations of the current. We present an exact calculation of the noise for a
single dot level and a perturbative evaluation of the noise in Born approximation (sequential tunneling
regime but without Markov approximation) for the general case of many levels with charging
interaction.
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Shot noise is a striking consequence of charge quanti-
zation and characterizes the transport of individual elec-
trons [1]. The theoretical description of noise is an active
field of research and so far has focused on symmetrized
noise, Ssym�!�. However, it was recently found that asym-
metric noise, S�!�, can also be detected since the noise
frequency ! corresponds to a quantum of energy �h!
being transferred from the measurement apparatus to
the system [2–7], which has been demonstrated experi-
mentally [8,9]. In this Letter we analyze the asymmetric
shot noise occurring in nonequilibrium quantum systems
[10]. We calculate the asymmetric noise of a quantum dot
for the first time and find striking asymmetric effects,
namely, steps in S�!�. Further, the Fano factor (ratio of
noise to current) becomes super-Poissonian for large fre-
quencies. For an experimental test of these predictions,
quantum dots are good candidates since they have been
studied extensively over the years, both experimentally
and theoretically [11–16]. Our analysis of noise is based
on a systematic perturbative approach within a standard
superoperator formalism. We go beyond previous calcu-
lations for dots which were done for small detection
frequencies ! with respect to bias and temperature (al-
lowing for a classical description of noise), and our results
remain valid in the quantum limit of large !. (In this
limit, a Markov approximation typically invoked would
not be valid, i.e., we take non-Markovian effects into
account.) We obtain the asymmetric noise of a quantum
dot in the sequential tunneling regime, including charg-
ing effects and allowing for an arbitrary level spectrum.
Further, we exactly calculate the dynamics of a dot with a
single level and its asymmetric noise. This confirms our
perturbative derivation and supports our general results.

Asymmetric noise.— We consider the operator Il which
describes the current in some lead l. We define the current
noise,

Sll0 �!� �
Z 1

�1
dtei!t�hIl�t�Il0 i � hIlihIl0 i
; (1)

in terms of the (nonsymmetrized) correlation function,
hIl�t�Il0 i � TrIl�t�Il0 ��. Here, �� is the stationary density
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matrix (of the full quantum system). Note that Il�t�Il0 is
not Hermitian and thus does not correspond to an observ-
able. One can avoid this non-Hermitian operator by argu-
ing heuristically that Eq. (1) is ‘‘unphysical’’ and by
considering the correlation function in terms of the sym-
metrized operator 1

2 �Il�t�Il0 � Il0Il�t�
 instead [17], leading
to symmetrize noise Ssymll0 �!�. However, we have Sll0 �!� �
Sl0l�!�

�, since Il is Hermitian and �� stationary, so Sll�!� is
a real quantity. Thus, Sll�!� can be regarded as an ob-
servable. This interpretation is justified by setups which
can measure Sll�!� [2–9].

Quantum dots.— To illustrate the presence of asym-
metric shot noise contributions due to quantum effects,
we consider a concrete system of a quantum dot in the
Coulomb blockade regime [18] coupled to Fermi leads l �
1; 2; . . . at chemical potentials �l. When only a single dot
level is present, the noise can be calculated exactly [12]
(see below). This is however not possible for systems with
many levels and charging interaction, for which we now
develop a perturbative approach. We assume weak cou-
pling such that current and noise are dominated by the
sequential tunneling (ST) contributions, valid for kT > �
with temperature T and level width �. We model the
combined system with the Hamiltonian H � Hlead �
Hd �HT; which describes leads, dot, and the tunnel cou-
pling between leads and dot, respectively, and with H0 �

Hlead �Hd. We let Hlead �
P
lk��lkc

y
lk�clk�, where cylk�

creates an electron in lead l with orbital state k, spin �,
and energy �lk. The electronic dot states jni are described
by Hdjni � Enjni, including charging and interaction
energies [18,19]. We use the standard tunneling
Hamiltonian HT �

P
lpk�t

�
lpc

y
lk�dp� � H:c:, with tunnel-

ing amplitude t�lp and where dyp� creates an electron on the
dot with orbital state p and spin �. The state of the
combined system is given by the full density matrix �,
while the electronic states of the dot are described by the
reduced density matrix, �d � TrR�, where the trace is
taken over the leads. We assume that at some initial time
t0 the full density matrix factorizes, ��t0� � �0

d�
0
R, with

the equilibrium density matrix of the leads, �0
R. From the
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von Neumann equation _� � �i�H;�
, one finds [20]
the generalized master equation for the reduced density
matrix, _�d�t� � �iLd�d�t� �

R
t
t0
dt0M̂�t0��d�t� t0�. Here,

the kernel M̂ is the self-energy superoperator, and we
define the superoperators LiX � �Hi; X
. Since we con-
sider the weak coupling regime, we proceed with a
lowest-order expansion in HT and obtain M̂�t� �
TrRLTe

�iL0tLT�
0
R. In the following, we work in Laplace

space, f�t� � f�!� �
R
1
0 dte

i!tf�t� (we take Im!> 0
but our results remain well defined for Im!! 0). Then,
the time evolution of �d reads

��d�t0� � i!�d�!� � M�!��d�!�; (2)

with M�!� � �iLd � M̂�!� and with the lower bound-
ary of the Laplace transform shifted to t0. We take t0 !
�1 and assume that the system has relaxed at the much
later time t � 0 into its stationary state ��d � �d�0� �
lim!!0��i!��d�!�. Using Eq. (2), we find M�0� ��d �
0, from which we get ��d.

Current.— We calculate the current Il flowing from
the dot into lead l and vice versa. The current operator
is Il�t� � ��1�le _ql�t� where ql is the number of electrons
in lead l. We choose the sign of Il such that hI1i � hI2i
in the case of two leads. We evaluate hIli in lowest
order of HT [21] and introduce Wf

l � W>
l �W<

l
with W>

l �t� � �iTrRIle
�iL0tLT�

0
R and W<

l �t� �
�iTrRLTe�iL0tIl�

0
R, and Wl;l0 �t� � TrRIle�iL0tIl0�

0
R.

These superoperators act only on the dot space. In the
ST regime, we find

hIli � TrdW
f
l �! � 0� ��d: (3)

This indicates that the superoperator Wf
l accounts for the

current through the dot.
Quantum shot noise.— We now evaluate the noise

[Eq. (1)] to lowest order in HT but without any further
approximation. Using some standard identities [20,21],
we factor out the conditional time evolution �c�t�: �
TrRe�iLt�

0
R, which propagates an arbitrary initial dot

state by time t. We see that �c is the formal solution of
the master equation [Eq. (2)] with initial value 1, thus
�c�!� � ��i!�M�!�
�1 [21]. We obtain the noise cor-
relation in the ST regime [21,22],

Sll0 �!� � 2Trd

�
Wf
l �!��

c
d�!��W

>
l0 �0� �W<

l0 �!�


�Wf
l0 ��!��

c
d��!�� eW>

l �0� � eW<
l ��!�


�Wl;l0 �!� � eWl0;l��!�
�
��d:

(4)

Here, ! is real and the limit !! 0 is well behaved. For a
superoperator S�t�, we have defined eS�t� such that

�S�t�A
y � eS�t�Ay. In deriving Eqs. (3) and (4), we have
made no Markov approximation where we would evaluate
M̂�t�eitL0 at ! � 0 and equivalently for the other super-
operators [21].
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We now return to the exact expression for the noise in
Born approximation [Eq. (4)] and explicitly calculate the
matrix elements of the various superoperators,

�M̂�t�eitL0�d �
X
l

�Gl
��d � gl��d� � H:c:; (5)

W<�>�
l �t�eitL0 � ��1�le

�
Gl

�

���

� gl�

	
; (6)

Wl;l0 �t�eitL0 � $ll0e2gl�; (7)

with Gl
� � Gl;out�t� �Gl;in�t� and gl� �

P
bnjbi�

hnjTrdfG
l
�jnihbjg [23]. We define tl�nm �














2'(l�
p P

pt
�
lphnjdp�jmi, with spin-dependent density of

states (l� in lead l. The matrix elements, Sbcjnm: �
hbj�Sjnihmj�jci, of the remaining superoperators are

Gl;in
bcjnm�!� �

X
�

tl�mctl�
�

nb

2

�
fl��bn �!� �

ip�
bn

'

�
; (8)

Gl;out
bcjnm�!� �

X
�

tl�
�

mc tl�bn
2

�
1� fl��nb �!� �

ip�
nb

'

�
; (9)

with �bn � Eb � En, which contains the charging en-
ergy, and p�

bn � logf2'kT=��1� 1��c=2� �bn �!
g �
Re �12 � i��bn �!��l�=2'kT
 and with digamma
function  and bandwidth cutoff �c. If we neglect !
with respect to the large energies �bn and �c ��nb, the
first term of p� (and thus �c) drops out in Sll0 �!�. We note
that the contribution corresponding to Eq. (7) has been
calculated for the symmetrized noise of a single electron
transistor with a continuous spectrum, using a phenome-
nological Langevin approach [24]. With our results,
Eqs. (4) and (5)–(9), it is straightforward to find Sll0 �!�
for an arbitrary dot spectrum; one only needs to evaluate
simple algebraic expressions.

We now identify the regime where the asymmetric
noise properties become most apparent. Asymmetries
arise from the ! dependence of Eqs. (8) and (9), i.e.,
are most prominent for j!j> kT, with steps occurring
at j!j ’ j�bn ��lj (see below). In this regime, the
Markov approximation breaks down (it changes the noise,
which for l � l0 becomes symmetrized, SMkov

ll �!� �
SMkov
ll ��!�) and noise probes non-Markovian effects.

For the noise [Eq. (4)], only the two last terms are
relevant, since they are of order � while the other terms
are of order �2=! and can be neglected. This is because
multiple tunneling processes [described by �c�!�] do not
occur on the short time scales corresponding to large !.
Thus, only the individual (uncorrelated) tunneling events
contribute, leading to shot noise.

Next, we discuss specific cases, see Fig. 1, where a dot is
coupled to two leads l � 1; 2 and a voltage bias �� �
�1 ��2 is applied.We assume single energy level spacing
and Coulomb charging energy larger than temperature,
bias, and noise frequency. We consider the dot state j0i
with an even number of electrons and with E0 � 0, and
136602-2
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the states j�i where an electron with spin � �"; # is added
to the dot [21]. For an applied magnetic field B, the
Zeeman splitting is �z � g�BB � E# � E" > 0. We con-
sider the ST regime, �1 >E" >�2, and define the tun-
neling rates ��l � jtl�0�j

2.
Dot with single level.— First, we assume a

large Zeeman splitting such that only the spin
ground state j "i is relevant, see Fig. 1(a), and we can
omit the index " . Since in this regime only one dot level
is involved, there are no charging effects between differ-
ent levels. Thus, Hd � E"dyd and so the full Hamiltonian
H is bilinear and can be solved exactly. The symmetrized
noise was calculated for this system and discussed for
! � 0 [12]. We now calculate the asymmetric noise
[Eq. (1)] for finite ! exactly. For this, we solve the
Heisenberg equations for d�t� and clk�t� and find
the current operator, Il�t�=e��1�l �

P
kl0k0 �jk0c

y
l0k0clk �

H:c:
 �
P
l0k0l00k00 ��l=jtlj

2�jk0j�k00c
y
l0k0cl00k00 . Here, the lead op-

erators clk are evaluated at time t0 (i.e., when the leads
are isolated and at equilibrium) and we have defined
jk0 � it�l tl0e

i��l0k0��lk��t�t0�=��l0k0 � E" � i�� and � � ��1 �
�2�=2. Now we insert Il�t� into Eq. (1) and readily obtain
the asymmetric noise, containing all quantum effects. We
consider the coherent nonperturbative regime of strong
coupling to the leads in the quantum limit of large
frequencies, !> �> kT. We obtain the shot noise

Sall�!��
X
l0;�

�e2�1�l0

2'�
-�!��l0 ��l��h��l0 ��h��l�!�
;

(10)

where h��� � arctan���� E"�=�
. Note that the noise
shows steps at ! � �jE" ��lj with width �.
Furthermore, for !> jE" ��lj, ��, the noise is asym-
metric and saturates at Sall�!� � e2�l, while Sall��!� � 0.

Let us now consider the ST regime kT > � in the exact
solution. For !> �, we find

Sall�!��
X
l0;�

e2�l�l0

2�
�$1;�1�fl0 �E"�
�$1;�1�fl�E" �!�
:

(11)
FIG. 1 (color online). Quantum dot coupled to two leads and
in the sequential tunneling regime. (a) Large Zeeman splitting,
�z >���!. When the dot is empty and ! � E" ��2, an
electron from lead 2 absorbs energy ! and tunnels for a short
time onto the dot, contributing to the noise S22. Similarly, for
!>�1 � E", the electron on the dot can tunnel into lead 1,
contributing to S11. (b) Smaller Zeeman splitting, here �z �
��=4. When the energies E";# �! (dotted lines) are aligned
with �1;2, the shot noise has a step; see Fig. 2 (solid line).
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Again, the noise shows steps and a pronounced asymme-
try. We can now compare Eq. (11) with the noise obtained
in the perturbative approximation [Eq. (4)] and find that
they agree. We further consider !> ��� kT in Eq. (11)
such that fl�E" �!� � 0 and fl�E" �!� � 1, leaving
fl�E"� unrestricted. Then, the (asymmetric) shot noise is

Sall�!� � e2�l; (12)

whereas Sall��!� � Sa12��!� � 0; this is the same result
as we have found for strong coupling [Eq. (10)]. The
interpretation is that for Sall��!�, the detector absorbs
energy !, which, however, cannot be provided by any
tunneling process. On the other hand, for Sall�!� the
detector provides energy !. Thus, if the dot is empty,
an electron with energy E" �! can tunnel from the
Fermi sea l into the dot, and if the dot is filled, an electron
can tunnel from the dot into an unoccupied lead state of
energy E" �!; see Fig. 1(a) [25]. Note that for jE" �
�lj> kT, the noise is Sa11�!� � ehIi��1 � �2�=�2. Thus,
for large !, the frequency-dependent Fano factor,
F11�!� � S11�!�=ehIi, is two for �1 � �2, and can even
become larger for �1 > �2, in contrast to the Markovian
case where we find it to be 1. Thus, we find that the
quantum shot noise is super-Poissonian [26]. Moreover,
away from the ST regime, say for E" � kT > �l, the dot
always remains in state j0i and only a small (higher order
in HT) cotunneling current hIi flows through the dot [16].
However, the noise can still be of lower order; it is
Sall�!� � e2�lfl�E" �!� for large j!j, resulting in a large
Fano factor Fll�!� and super-Poissonian shot noise.

Dot with two or more levels.— Second, we consider the
regime where the state j #i becomes relevant and charging
interaction enters (here no exact solution is available). We
consider a small Zeeman splitting such that �1 >E";# >
�2 and fl�E"� � fl�E#�; see Fig. 1(b). Using Eq. (4), we
calculate the noise Sb11�!� and plot it in Fig. 2 (solid line).
For large j!j, such that fl�E� � j!j� � 0 and fl�E� �
j!j� � 1, the noise vanishes for !< 0 while for !> 0 it
saturates at

Sbll�!� � 2e2�l
�1 � �2

�1�1� f1�E"�
 � �2�1� f2�E"�

: (13)

More generally, for the weaker assumption j!j> �, the
numerator in Eq. (13) becomes 1

2

P
l0;�;��l0 �$1;�1 �

fl0 �E"�
�$1;�1 � fl�E� �!�
. Thus, Sb11 shows four steps
at !k � ���1 � E";#�, indicated by the dotted lines in
Fig. 1(b), since for increasing !, more energy is available
and more tunneling processes are allowed. The steps in Sbll
are broadened due to temperature, and the step is /
tanh��!�!k�=2kT
. Next, we consider an intermediate
Zeeman splitting, E# >�1 � kT. In this regime (c), the
dot is either in state j0i or j "i, while the state j "i is never
occupied and so no additional tunneling process occurs
for ! � ��E# ��1�. Thus, the steps in the noise are at
! � ���1 � E"� and at ! � E# ��1; see Fig. 2 (dashed
136602-3



FIG. 2. The Fano factor F11�!� � S11�!�=ehIi in the shot
noise regime ��> kT as function of noise frequency ! for a
dot with two Zeeman levels. (Asymmetric noise at frequencies
up to 90 GHz has been measured with a resolution compatible
with this plot [8].) We consider T � 100 mK, ��=e �
460 �V, E" � ��1 ��2�=2, �1 � �2 � 5� 109 s�1, and g �

2. We use the full expression for the noise Sb11 [Eq. (4)] (solid
line) and within Markov approximation, Sb;Mkov

11 , (dotted line),
for B � 1 T [see Fig. 1(b)], thus �z � ��=4 and hIi � 530 pA.
We also show Scll (dashed line), being strongly asymmetric,
where B � 3 T, �z � 3��=4, and hIi � 400 pA. The dip near
! � 0 is due to the charging effect of the dot, while the steps at
!k (see text) arise from additional transitions for increasing !
and provide a striking effect in the quantum shot noise. Note
that these steps disappear when the noise Sb11 is symmetrized
(some features remain for �1 � �2).
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line). Generally, we see that the shot noise Sll�!� of a
quantum dot consists of a series of steps and is mono-
tonically increasing, apart from features near ! � 0.
Each dot level with energy Ej gives rise to steps at
���l � Ej� if the level is inside the bias window, �1 �

kT > Ej > �2 � kT, and to a single step at j�l � Ejj
otherwise. (More precisely, instead of the energy Ej,
one has to consider the chemical potential of the dot,
�bn [19].) The height h� of the step at ! � �!0 is well
defined for sufficiently low temperatures and is given as
follows. When ! is increased above �!0 < 0, a step
arises from a tunnel transition from some initial dot state
jii to a final state jfi. The step height h� is then given by
the product of the corresponding tunneling rate, �0, and
the population of the initial state, �i � hij�djii. The step
at ! � !0 is determined by the reversed tunneling pro-
cess, and is thus given by the product of the same tunnel-
ing rate �0 and the population of the final state, �f. Thus,
we can extract the tunneling rate from the step height and
the level populations from the ratio of the step heights,
h�=h� � �i=�f. (If the step at �!0 is absent, then h� �

0 and thus �i � 0; e.g., from the steps in Scll, we can
extract ��# � 0; see Fig. 2.) For sufficiently large j!j, the
antisymmetric contribution becomes 1

2 �Sll�!� �
Sll��!�
 �

1
2 sgn�!�Sll�j!j�, which for one or two levels

is given by Eqs. (11)–(13). Finally, we stress that such a
highly asymmetric Sll�!� can be observed with an ap-
propriate measurement apparatus [2–7] and the quantum
fluctuations beyond the classical limit can be accessed..
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