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Rule for Structures of Open Metal Surfaces
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We present a clear and simple rule for determining the relaxation sequences on open (stepped,
vicinal, or high-Miller-index) metal surfaces. At the bulk-truncated configuration of a surface, a
surface slab is defined where the coordination of atoms is reduced from the bulk. The rule predicts that
the interlayer spacings within this slab contract, while the interlayer spacing between this slab and the
substrate expands. By first-principles calculations, we show that this rule is obeyed on all open Cu
surfaces with interlayer spacings down to about 0.5 Å. We also illustrate a direct relation of the
relaxation sequences to the charge redistribution on these surfaces, which is demonstrated to be driving
the multilayer relaxations. The applicability of the rule can be extended to other fcc and bcc metals,
including unreconstructed and missing-row surfaces.
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Cutting a crystal at a small angle away from a low-
Miller-index plane creates two vicinal (or high-Miller-
index) surfaces. Such surfaces exhibit atomic terraces
orienting to the low-index plane, and the terraces are
separated by either straight or kinked atomic steps, for
which they are also described as stepped surfaces. Despite
their high surface free energy, stepped metal surfaces are
found to be stable when clean with respect to reconstruc-
tion up to near the melting point [1,2]. The step and kink
sites are known to play key roles in many physical and
chemical processes, such as phase changes, heterogeneous
catalysis and crystal growth [1]. Elucidating the atomic
structures of the stepped surfaces is, therefore, important
because the structural information of a surface is essen-
tial for studying its other properties.

Many attempts to understand the mechanism of ionic
relaxations on single crystal metal surfaces have been
made in the past few decades. Based on experimental
results, the topmost atomic layer on low-index metal
surfaces can relax both inwards and outwards.
Extensive theoretical studies have focused on formulating
a general rule on top layer relaxations experimentally
observed [3–5]. As made clear by Feibelman [5], a physi-
cal picture and a chemical picture exist to describe the top
layer relaxations. The former originated from the theory
of Finnis and Heine [3] using Smoluchowski’s concept of
charge smoothing [6]. The latter, put forward by
Feibelman, is based on the promotion-hybridization
idea [5]. In contrast to low-index surfaces, all high-index
metal surfaces experimentally studied exhibit, without
exception, a contraction in the first interlayer spacing.
Another feature of high-index metal surfaces is that
multilayer relaxations are usually more significant.
Recently, the multilayer relaxations on high-index metal
surfaces have become a new focus of the theoretical
studies [7–9]. Empirical rules for predicting a priori
the relaxation sequence have been deduced from existing
experimental and theoretical results [10,11]. However, the
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validity of these rules is still subject to systematic tests.
More importantly, why certain high-index metal surfaces
follow a specific relaxation sequence is still an open
question. In this Letter, we first show that the relaxation
sequences on all open Cu surfaces with their interlayer
spacings down to about 0.5 Å obey our proposed rule.
Second, we quantitatively illustrate how the relaxation
sequence is related to the change in the coordination of
the atoms near the surface and how the charge redistrib-
ution drives the multilayer relaxations.

We propose that the relaxation sequence on open metal
surfaces [12] follows the rule: At bulk-truncated configu-
ration, define a surface slab in which the nearest neigh-
bors of all atoms are fewer than those in the bulk; in the
process of relaxation, the interlayer spacing between each
pair of atomic layers within this slab contracts, while the
spacing between this slab and the substrate expands [11].
In Table I, we list the open Cu surfaces ranked by the
interlayer spacing which serves as a measure of openness.
We take these surfaces as the benchmark to evaluate the
proposed rule. The interlayer spacings of the surfaces in
Table I at their bulk-truncated configurations can be
obtained by dbulk � a0=��

��������������������������

h2 � k2 � l2
p

�, where a0 is
the lattice constant, (hkl) is the Miller indices, and �
equals two if there is at least one even number in the
indices and one otherwise. Table I also shows the nearest
neighbor sequences, from which one can determine the
number of atomic layers in the surface slab (Ns), and the
relaxation sequences of these surfaces, which are pre-
dicted from the proposed rule. A nearest neighbor se-
quence �n1; n2; n3; 12; . . .� means that, at bulk-truncated
configuration, the atoms in the first layer have n1 nearest
neighbors, the second layer n2, the third n3, and, from the
fourth layer downwards, the number recovers to 12, i.e.,
the value in the bulk fcc structure. For a surface having a
nearest neighbor sequence of �n1; n2; n3; 12; . . .�, the sur-
face slab consists of three layers and, according to the
rule, the interlayer spacings within this slab, i.e., d12 and
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TABLE I. Open Cu surfaces and their relaxation sequences
predicted from the nearest neighbor sequences according to the
proposed rule. Ns is the number of atomic layers in the surface
slab.

Nearest neighbor Relaxation
Surface sequence Ns sequence

Cu(110) �7; 11; 12; . . .� 2 �� � � �

Cu(311) �7; 10; 12; . . .� 2 �� � � �

Cu(331) �7; 9; 11; 12; . . .� 3 ���� � �

Cu(210) �6; 9; 11; 12; . . .� 3 ���� � �

Cu(211) �7; 9; 10; 12; . . .� 3 ���� � �

Cu(511) �7; 8; 10; 12; . . .� 3 ���� � �

Cu(531) �6; 8; 10; 11; 12; . . .� 4 ���� � � �

Cu(221) �7; 9; 9; 11; 12; . . .� 4 ���� � � �

Cu(310) �6; 8; 9; 11; 12; . . .� 4 ���� � � �

Cu(533) �7; 9; 9; 10; 12; . . .� 4 ���� � � �

Cu(711) �7; 8; 8; 10; 12; . . .� 4 ���� � � �

Cu(551) �7; 7; 9; 11; 11; 12; . . .� 5 ������ � �

Cu(320) �6; 7; 9; 11; 11; 12; . . .� 5 ������ � �
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d23, contract (denoted by the ‘‘�’’sign), while the spacing
between this slab and the substrate, i.e., d34, expands
(denoted by the ‘‘�’’ sign).

It is worth noting that Cu(711) and Cu(551) have the
same interlayer spacing and the same surface unit cell, but
different stacking, i.e., different interlayer vector. This
different stacking results in the different nearest neighbor
sequence, i.e., �7; 8; 8; 10; 12; . . .� for (711) and
�7; 7; 9; 11; 11; 12; . . .� for (551). This means that the sur-
face slab of Cu(711) consists of four atomic layers while
Cu(551) consists of five. Hence, different relaxation se-
quences are predicted on the two surfaces.

We conducted first-principles calculations to evaluate
the proposed rule. Our calculations are based on the
density functional theory and the generalized gradient
approximation to the exchange-correlation functional
[13]. Plane waves are employed as the basis functions
and the interactions between the ion cores and valence
electrons are described by the Vanderbilt-type ultrasoft
pseudopotential [14,15]. The surfaces are simulated by
symmetric atomic slabs separated by vacuum layers. The
TABLE II. Multilayer relaxations of open Cu

(110) (311) (331) (210) (211) (511)

�d12 (%) �9:9 �13:7 �13:6 �16:2 �13:1 �10:4
�d23 (%) �4:4 �4:5 �5:1 �5:6 �9:9 �13:6
�d34 (%) �1:0 �0:4 �8:0 �6:9 �9:5 �9:4
�d45 (%) �0:7 �0:2 �2:5 �0:5 �1:6 �3:8
�d56 (%) �0:1 �0:9 �0:2 �0:6 �1:0 �2:0
�d67 (%) �0:2 �0:3 �0:8 �0:3
�d78 (%)
�d89 (%)
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ionic relaxations are guided by the calculated Hellmann-
Feynman forces. TheVienna ab initio simulation package
(VASP) [16] is adopted to carry out the calculations
throughout this work.

The calculated multilayer relaxations of open Cu sur-
faces are listed in Table II. Since the lateral relaxations of
all these surfaces are relatively small (about 2% or less),
only the vertical relaxations of the interlayer spacings are
given. Comparing Table II with Table I, it can be seen that
the relaxation sequences on all the 13 surfaces comply
with the proposed rule, i.e., Ns � 1 contractions followed
by an expansion. Note that, as expected, Cu(711) and
Cu(551) exhibit different relaxation sequences although
they have the same interlayer spacing and surface unit
cell.

Some of the relaxations in Table II, namely �d34 on
Cu(531), �d23 on Cu(533), and �d45 on Cu(551), are too
small to be said unambiguously as having a contraction.
Nevertheless, it can be noticed that the relaxation sequen-
ces are actually characterized by the positions where the
expansions take place. From this point of view, there is no
ambiguity since the first expansions on all the 13 surfaces
are significant.

Next, the relaxation rule proposed will be understood
from the charge redistribution on these surfaces, i.e., the
physical picture [3]. For this purpose, we calculated the
electric charge within a sphere centered at the nuclei of
all atoms in the simulating slabs. The sphere radius,
1.42 Å, is chosen to be the Wigner-Seitz radius, which
makes the volume of the sphere equal to that of the
Wigner-Seitz cell. For comparison, the radius (1.29 Å)
that makes the spheres touch each other was also tested.
The same trend as given below has been observed. All
calculations were done on slabs at bulk-truncated con-
figurations. This also allows the study of the initial forces
applied on the atoms when the surface is created. The
plots of the number of charges within a sphere against the
layer depth are given in Fig. 1.

In Fig. 1, the 13 surfaces are divided into four groups
according to their relaxation sequences (or Ns). We have
two observations from this figure. First, the charge per
atomic sphere decreases considerably for the atoms near
surfaces from first-principles calculations.

(531) (221) (310) (533) (711) (551) (320)

�16:7 �14:3 �11:8 �15:9 �12:3 �7:5 �11:5
�12:3 �6:8 �15:4 �2:2 �4:1 �18:0 �16:5
�1:3 �5:9 �4:1 �13:0 �18:0 �5:5 �6:3
�8:6 �12:7 �10:2 �14:6 �15:7 �1:3 �3:9
�0:3 �4:6 �2:0 �0:4 �3:1 �13:9 �13:7
�1:0 �1:4 �0:8 �4:4 �4:6 �1:8 �1:4
�1:0 �1:8 �0:2 �0:4 �3:4 �3:3 �1:4

�1:9 �0:5
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TABLE III. Initial forces (component perpendicular to the
surface) on the atoms calculated at the bulk-truncated configu-
rations. fn denotes the force on the atoms in the nth layer. The
unit used is eV= �A.

Surface f1 f2 f3 f4 f5 f6

Cu(110) �0:41 �0:38 �0:04
Cu(311) �0:46 �0:27 �0:23
Cu(331) �0:45 �0:06 �0:32 �0:06
Cu(210) �0:60 �0:08 �0:41 �0:19
Cu(211) �0:45 �0:01 �0:23 �0:22
Cu(511) �0:45 �0:16 �0:26 �0:28
Cu(531) �0:64 �0:14 �0:27 �0:34 �0:23
Cu(221) �0:44 �0:02 �0:01 �0:31 �0:07
Cu(310) �0:58 �0:19 �0:07 �0:41 �0:27
Cu(533) �0:40 �0:01 �0:04 �0:21 �0:15
Cu(711) �0:41 �0:15 �0:15 �0:25 �0:25
Cu(551) �0:42 �0:38 �0:07 �0:35 �0:31 �0:00
Cu(320) �0:60 �0:38 �0:07 �0:43 �0:34 �0:17

FIG. 2. Force changes in simulated relaxations on Cu(511)
and Cu(711).

FIG. 1. Plots of charge per atomic sphere against the layer
depth on open Cu surfaces at bulk-truncated configurations.
The surfaces are grouped according to Ns as given in Table I.
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the surface. This charge redistribution can be understood
in the light of Smoluchowski’s concept of charge smooth-
ing. According to this concept, at metal surfaces, the
nearly free electrons tend to spread towards regions of
low charge density and smooth the corrugation formed by
the ion cores in order to lower the kinetic energy. Second,
the number of layers in which the charge per atomic
sphere decreases, coincides with Ns given in Table I, as
guided by the dashed lines in Fig. 1. This indicates a
direct relation of the relaxation sequence to the charge
smoothing effect. In the process of charge smoothing, the
movement of electrons induces ionic relaxations. For
more open surfaces, electrons from the deeper layers
contribute to the smoothing; hence more layers relax.

The effect of charge redistribution can be quantita-
tively seen from the calculated initial forces on the atoms
at bulk-truncated configurations as listed in Table III,
where a ‘‘�’’ sign denotes a force pointing into the
surface and ‘‘�’’ out of the surface. From this table, it
can be seen that, for all the surfaces, the topmost layer
feels an inward force, which is always of the largest
magnitude, and the Nsth layer feels an outward force,
while the forces on the layers in between are not definite.
This means that the two sides of the surface slab feel
compression forces, which lead to contractions within the
surface slab. If the magnitude of fNs�1 is always smaller
than fNs

, the expansion of the spacing between the surface
slab and the substrate can also be explained readily.
However, we found jf4j> jf3j on Cu(511) and jf5j 	
jf4j on Cu(711). This implies that dynamically monitor-
ing the forces in the process of the simulated relaxation,
instead of solely studying the initial forces, is necessary
in order to explain the expansion. Figure 2 illustrates the
force changes in simulated relaxations on Cu(511) and
Cu(711). It can be seen that all forces vanish in a mono-
136102-3
tonic way except for fNs�1, which changes from negative
to positive after two relaxation steps. This illustration
using Cu(511) and Cu(711) is representative of all other
surfaces studied and is independent of the algorithm
(conjugate gradient and variable metric methods are
tested) used in the relaxation. It is the opposite sign of
fNs

and fNs�1 that is responsible for the expansion.
It is noted that the proposed rule is also consistent with

the bond-order–bond-length relation, i.e., the chemical
picture [5]. Based on this relation, when the number of
neighbors of an atom is reduced, the bonds become
stronger; hence the bond length is shortened. In the sur-
face slab, all atoms have fewer nearest neighbors than
those in the bulk. Hence, the interlayer spacings (the bond
length) within it become shorter. If considering the sur-
face slab as a whole with respect to the substrate, the top
layers of the substrate actually see more neighbors due to
the contractions in the surface slab. This results in a
weakened bonding between the surface slab and the sub-
strate and may explain the expansion between them.

Finally, we postulate that the proposed rule may also
apply to metals of bcc structure and even reconstructed
surfaces. In Table IV, we list the relaxation sequences on
all open Fe surfaces studied by quantitative low-energy
136102-3



TABLE IV. Testing of the proposed rule on open Fe surfaces.

Nearest neighbor Relaxation
Surface sequence Ns sequence Reference

Fe(211) �5; 7; 8; . . .� 2 �� � � � [17]
Fe(310) �4; 6; 8; . . .� 2 �� � � � [18]
Fe(111) �4; 7; 7; 8; . . .� 3 ���� � � [19]
Fe(210) �4; 6; 6; 8; . . .� 3 ���� � � [20]
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electron diffraction analysis [17–20]. It can be seen that
these relaxation sequences are consistent with the pro-
posed rule. For missing-row �110�-�1
 2� and �311�-�1

2� surfaces of fcc metals, the surface slabs consist of one
more atomic layer than those in the unreconstructed
configurations due to the missing rows. The expansions
are, therefore, expected to be delayed to one layer deeper,
i.e., to �d34. Indeed, this is found to be true for Pt by first-
principles calculations [21]. Moreover, it has been shown
that the surfaces of the same orientation, but of different
metals, tend to have the same relaxation sequence [22].
Based on the evidence above, it is expected that the
proposed rule is universally applicable to open metal
surfaces.

In summary, an empirical rule for predicting the multi-
layer relaxation sequences on open metal surfaces has
been proposed and systematically evaluated on a series of
open Cu surfaces by first-principles calculations. It has
been shown that the relaxation sequence on all these
surfaces obey the rule. This rule can be understood using
both physical and chemical arguments, which warrants
an extension of this rule in the understanding of all open
metal surfaces.

Y.Y. S. acknowledges the National University of
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