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Network Rigidity and Properties of SiO2 and GeO2 Glasses under Pressure
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We report in situ studies of SiO2 glass under pressure and find that temperature-induced densification
takes place in a pressure window. To explain this effect, we study how rigidity of glasses changes under
pressure, with rigidity percolation affecting the dynamics of local relaxation events. We link rigidity
percolation in glasses to other effects, including a large increase of crystallization temperature and
logarithmic relaxation under pressure.
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It has been proposed by Phillips [1] that glass can be
described as a network defined by the interplay between
the number of degrees of freedom and the number of
bonding constraints. The case when the two are equal,
corresponds to the ‘‘ideal’’ glass with average coordina-
tion number hri � 2:4. When the coordination number is
lower than 2.4, the structure will support floppy modes
[2], and when hri> 2:4 the structure is overconstrained
and hence rigid. There is considerable interest in the
properties of network glasses for varying values of hri;
in chalcogenide glasses such as SixSe1�x the value of hri
can be tuned by changing the chemical composition x.
Recently it was found that for a small range of values of
hri around 2:4 there is a dramatic loss of irreversibility of
the heat flow on cycling through the glass transition
temperatures [3]. This has been called the ‘‘reversibility
window’’, and it has been suggested that it arises because
of a heterogeneous spatial distribution of rigidity across
the sample. It has been argued that the same rigidity
arguments can be applied to understanding protein fold-
ing, and the possible existence of a reversibility window
in this case may provide proteins with the very function-
ality they need for their important role in life itself [4].
Similar ideas have been applied to understand the prop-
erties of high-temperature superconductors [5].

In chalcogenide glasses, the reversibility window is
seen around hri � 2:4, corresponding to the ideal glass
state, being located between floppy and rigid state [3].
This is achieved by tuning the chemical composition x of,
for example, SixSe1�x glass, which changes the balance
between higher-coordinated and lower-coordinated
atoms. We have argued in an earlier paper, based on
molecular dynamics simulations of silica (SiO2) glass,
that pressure serves as a tuning parameter analogous to
changing composition. Pressure introduces locally rigid
higher-coordinated elements in what is otherwise a rela-
tively floppy tetrahedral network [6–8].

At a particular pressure the network changes from
being flexible to rigid; at this point we say that there is
a rigidity percolation. We will say more about this below.
The molecular dynamics simulations led to the prediction
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that there is a special range of pressures around the onset
of rigidity percolation in which there is an enhanced
temperature-induced rapid densification, and that this
range of pressures is an analogue to the reversibility
window seen in the chalcogenide glasses [9].

The primary purpose of this Letter is to provide the
experimental confirmation of this prediction, using both
new experimental data and reanalysis of published data.
We provide new simulation data to match the conditions
of the experiments, and we also use new simulations to
predict that a similar pressure window exists in GeO2

glass. In addition, we also provide the link between
changes of glass rigidity and other physical phenomena,
including large increase of crystallization temperature at
rigidity percolation point and different behavior of loga-
rithmic relaxation of SiO2 and GeO2 glasses under
pressure.

We start by presenting the experimental measurement
of densification in silica glass. New experimental data
were obtained using opposed anvil apparatus toroidal
devices [10]. Other experimental data were obtained in
an earlier study [11], some of which were not reported at
the time. The simulation work simply involved changing
the pressure of the sample as a first stage, followed by a
series of incremental changes in temperature —this is a
relatively easy procedure in the simulations. Thus the
densification is defined as 	V�P; T� � V�P; T�=V�P; T �
300� � 1. For the experimental part of this work, the
earlier data were obtained by changing pressure at a fixed
temperature. We measured the in situ densification at a
fixed temperature of 730 K, and 	V was obtained using
the definition above. We also obtained estimates of densi-
fication from a wider series of ex situ measurements on
quenched samples obtained by ourselves together with
lower-pressure data from [12]. In this case, the formula
for 	V was corrected by a knowledge of bulk modulus
and thermal expansion. For both in situ and ex situ ap-
proaches, even where we have used preexisting published
data, the analysis of 	V is new here. For cases where
measurements of 	V were obtained at the same pressure
for both methods, we found that there were no systematic
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differences in the values of 	V, and so we report here
averages of the two methods.

Our earlier simulations were performed at tempera-
tures at 600, 800, and 1200 K. We have repeated these at
a temperature of 700 K for better comparison with the
experimental data, using the same interatomic potentials
[13] and the same starting configurations as in our earlier
work. We have performed new simulations on GeO2 glass
using the interatomic potential model developed to
handle high-pressure phases of germania [14]. For GeO2

we used the same starting configuration as for silica glass
(1536 atoms in a perfect tetrahedral network) but now
relaxed according to the new potential model.

Our first key point is to compare the experimental data
with the simulation results for the pressure window, and
this is shown in Fig. 1. This shows that at lower pressures
and higher pressures 	V is close to zero, but in a finite
range of pressures around 5 GPa there is a significant
decrease in 	V; i.e., 	V becomes significantly nonzero
and negative. This figure immediately makes our main
point, namely, that the experimental data confirms the
earlier theoretical prediction, thereby showing that the
simulation work is properly capturing the experimental
situation. Figure 1 also shows our prediction for GeO2

obtained here using molecular dynamics simulations (de-
tails given above). This shows similar behavior except
shifted to much lower pressure and over a narrower range
of pressures. The existence of window in GeO2 glass now
needs experimental confirmation, although its precise
location in Fig. 1 may depend on the ability of the
potential model to capture structural changes in the
wide range of (P, T).

In our earlier paper we offered a preliminary explana-
tion of this pressure window based on our rigid unit mode
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FIG. 1. Temperature-induced densification in the pressure
window in SiO2 and GeO2 glasses. A circled line is the
experimental result; solid lines are the results from MD simu-
lation.
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(RUM) model [15,16] coupled with changes in the coor-
dination number. The RUM model quantifies the rigidity
of the structure in terms of the number of RUMs, which
are the modes that can propagate without constituent SiO4

and GeO4 tetrahedra having to distort. In a system where
the only allowed deformations are those associated with
flexing of the joints between connected tetrahedra, which
are a zero-valued force constant, the RUMs will be the
vibrations with exactly zero frequency. The model intro-
duces a parameter responsible for the ‘‘stiffness’’ of a
tetrahedron which sets the scale for high-frequency vi-
brations associated with deformations of the tetrahedra.
Within this model, a structure with no RUMs gives
Debye-type dependence of the density of states,
g�!RUM� / !2, whereas RUM-floppy structure gives
g�!RUM� � constant at the origin. We stress here that
this is only true within the model; when other force
constants are added, such as the interactions between
neighboring tetrahedra, the density of states will always
fall to zero at ! � 0. As an example of the RUM analysis,
we have previously shown that silica glass containing
ideal tetrahedra is as flexible against RUMs distortions
as �-cristobalite, as judged by the observation that
g�!RUM� � constant for both phases [15,16]. Hence the
RUM model serves as a diagnostic tool to analyze the
degree of system’s flexibility against RUM-type
distortions.

In our earlier paper we concentrated on understanding
the origin of the behavior on the low-pressure side of the
rigidity percolation point at 5 GPa. On pressurizing above
3 GPa, rebonding events cause an increase in coordination
numbers of the atoms, which leads to increased densifi-
cation. We denote this type of process as a ‘‘local relaxa-
tion event’’ (LRE). The existence of any LRE is aided by
the RUM flexibility of the network, because the network
can more easily adjust to local rebonding. This leads to a
lowering of barriers against rebonding events and pro-
motes densification. Moreover, in a RUM-floppy system,
increasing the temperature excites low-frequency vibra-
tions with large amplitudes [15,16], which assists in
rebonding processes (and hence promotes densification)
because atoms across the rings can be brought close
together by thermal vibrations. However, the increase in
coordination number also gradually increases the rigidity
of the network, which in turn leads to a gradual decrease
in the number of RUMs. The changes in the RUM density
of states with increasing pressure is shown in Fig. 2. An
earlier version of this figure was given in our previous
paper, but this has been recalculated to a higher precision
here and for more pressures in order to look for fine
detailed changes around 5 GPa. What can be seen is that
g�!RUM� at low ! decreases on increasing pressure. We
define the rigidity percolation point as the point at which
g�!RUM� / ! at 5 GPA (see Fig. 2). At higher pressures,
g�!RUM� flattens out at the origin and becomes / !2.
135502-2
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FIG. 2. Normalized RUM density of states of SiO2 glass
under several pressures.
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These results are qualitatively consistent with recent
experimental studies where the stiffening of the glass
network has been seen under pressure [17]. In our pre-
vious paper [7], we showed that although the coordination
number starts to change around 3 GPa, it is at around
5 GPa that the mean coordination number increases
drastically.

We now discuss what happens immediately above
5 GPa. We argue that the number of RUMs does not
completely vanish at 5 GPa. Here we argue by analogy
to the RUM flexibility of crystalline materials. The case
where g�!RUM� � constant corresponds in a crystal to
where the RUMs lie on two-dimensional surfaces of
wave vectors in reciprocal space, and the case where
g�!RUM� / ! corresponds to one-dimensional lines of
wave vectors. There is, of course, no natural analogue of
the crystalline reciprocal space in a glass, but the real-
space picture is that the correlated RUM motions involve
lines of tetrahedra in the former case and planes in the
second case. Figure 2 suggests that this is the situation on
increasing pressure above 5 GPa. Thus for pressure above
5 GPa there is still some network flexibility, but at a lower
level. This residual network flexibility will still enhance
rebonding through the same mechanism as below 5 GPa.
Hence the curve in Fig. 1 does not have a sudden increase
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at 5 GPa. However, the reduced number of RUMs means
that there are fewer ways in which the network can flex,
resulting in a smaller number of induced LRE, and hence
there is a gradual change in the densification back towards
zero. It is not easy to separate the RUMs from the acoustic
modes in Fig. 2, and indeed there is also an additional
contribution to g�!� / !4 as discussed in Ref. [18], that
will become more prominent in Fig. 2 once the RUM
component has decreased.

We find that in GeO2 glass, increased coordinations
appear in the structure at a much lower pressure, around
0.5 GPa (comparable with reliable pressure resolution in
the current simulations). This is consistent with a recent
study that employed a different interatomic potential
[19]. The analysis of g�!RUM� shows that rigidity perco-
lation sets in almost simultaneously with the onset of
increased coordinations. This gives rise to the
temperature-induced densification in the pressure win-
dow located around 0.5–1 GPa (see Fig. 1). The difference
in location of the window with SiO2 glass can be attrib-
uted to a smaller stiffness of tetrahedra in germania glass,
which results in their deformation and rigidity percola-
tion setting in at lower pressure and in a more narrow
pressure interval than in SiO2 glass. This result is con-
firmed by a recent in situ study of structural changes of
GeO2 glass, which showed temperature-induced densifi-
cation taking place around 1 GPa [20].

We have seen that the pressure windows shown in Fig. 1
directly probe the changes of network rigidity of glasses
under pressure. We now turn to other effects that can be
understood on the basis of network rigidity. These are
changes of crystallization temperature under pressure and
slow logarithmic relaxation of pressurized glasses.

Recently, the crystallization temperature Tc of SiO2

glass under pressure has been measured [21]. It has been
found that Tc first decreases as pressure increases. This is
followed by the sharp large increase of Tc at about 7 GPa
[21]. This behavior can be understood if we consider a
LRE as an elementary relaxation in the path to crystal-
lization. First, barriers to induce LRE decrease at low
pressures, as the tetrahedra are brought closer to each
other. Second, the kinetics of LRE is assisted by the RUM
flexibility of the pressurized glass, which persists up to
the pressure marking rigidity percolation. Therefore one
expects initial decrease of the temperature needed to
excite LRE and hence decrease of Tc. After rigidity
percolates, energy barriers increase from the low values
of RUM-type excitations to the considerably higher en-
ergies associated with the deformations of tetrahedra.
Hence the temperature needed to induce LRE increases
sharply after the rigidity percolation point, in good
agreement with the experimental value.

We note that computer modelling of crystallization
processes is limited by the long times required to observe
crystallization, particularly in quantum-mechanical
135502-3
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simulations. That the coupling of LRE to structural ri-
gidity affects crystallization process allows one to specu-
late about the nature of the microscopic processes that
accompany crystallization. From the picture above it
follows that an elementary event in the path towards
crystallization is one LRE, which was identified as the
elementary rebonding event during glass densification [6].

We now consider the logarithmic relaxation of volume
seen in SiO2 and GeO2 glasses under pressure [22]. In
these experiments, it is found that for SiO2 glass, loga-
rithmic relaxation is only seen at pressures starting from
about 7 GPa, while in GeO2 glass it already sets in at
about 2 GPa. The origin of this difference can be traced to
the different response of network topology of the two
glasses to pressure. We have recently suggested that the
logarithmic relaxation can be adequately described by the
dynamics of LRE and their coupling to structural
changes under pressure [23]. If no LRE are induced dur-
ing pressurizing (which corresponds to the densification
by mostly RUM-type distortions), no logarithmic relaxa-
tion is expected to take place. We now recall that SiO2

glass densifies with the aid of RUM-type distortions
coupled to a small number of LRE, up to 5 GPa, whereas
in GeO2 glass LRE are already induced at 0.5–1 GPa.
Hence in SiO2 and GeO2 glasses the logarithmic relaxa-
tion is expected to set in only after the corresponding
points of rigidity percolation, in good agreement with the
experimental observations.

In summary, we performed in situ measurements of
pressure effects in SiO2 glass that showed temperature-
induced densification in the pressure window. Changes of
network rigidity of glass under pressure offer the expla-
nation of this phenomenon, and we have predicted a
similar pressure window in GeO2 glass. We have linked
large increase of crystallization temperature of pressur-
ized glass to rigidity percolation. Finally, differences in
rigidity of SiO2 and GeO2 glasses provide the explanation
for a different behavior of logarithmic volume relaxation.
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