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First Experimental Evidence for Quantum Echoes in Scattering Systems
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A self-pulsing effect termed quantum echoes has been observed in experiments with an open
superconducting and a normal conducting microwave billiard whose geometry provides soft chaos,
i.e., a mixed phase space portrait with a large stable island. For such systems a periodic response to an
incoming pulse has been predicted. Its period has been associated with the degree of development of a
horseshoe describing the topology of the classical dynamics. The experiments confirm this picture and
reveal the topological information.
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FIG. 1. The open billiard used in this work possesses a stable
orbit (dotted line) and two unstable periodic orbits (dashed
lines) at the necks. Between the unstable orbits, a wave packet
can get trapped. The circles indicate the positions of the
antennas ( labeled by numbers from left to right) used in the
microwave experiment.
Billiards have served as a paradigm for chaotic dynam-
ics ever since the pioneering work of Sinai [1]. Flat
microwave cavities of a shape corresponding to billiards
have been extensively used to detect quantum signatures
of classical chaos and have served as analog systems for
properties of atoms, nuclei, and molecules [2–5]. More
recently these analogies became much closer with the
discussion of nanostructures such as quantum dots and
quantum wires [6,7]. While work first concentrated on
closed billiards for the study of spectra and wave func-
tions [2,3], more recently interest focused on scattering
systems. On one hand, antennas were considered as open
channels [8–11] and, on the other hand, outright open
billiards, e.g., billiards connected to waveguides [12–16]
have been studied. In the latter case the waveguides make
these systems rather complicated. Recently there has been
a proposition [17–19] that open scattering systems with a
well defined finite interaction region may display a self-
pulsing effect called quantum echoes [20], if we excite a
system which has a very large stable island in phase space
with a short pulse. In billiards such situations can be
reached if the connection to the exterior region occurs
through fairly narrow necks. If the classical scattering
dynamics is chaotic, we usually find a chaotic layer which
surrounds the stable island in phase space. The scattering
echoes will yield information on the characteristic struc-
ture of this layer [21]. Importantly, this is also true if the
observation is of wave mechanical type. In this sense our
experiment is an approach to the inverse chaotic scatter-
ing problem [17].

In order to observe the predicted echoes and measure
their period, experiments were performed using flat res-
onators both at room temperature and in a superconduct-
ing state at 4.2 K. The data were taken for continuous
input at fixed frequencies covering a range from 0 to
20 GHz, and a Fourier transform of these results yields
the response to a short incoming pulse that we require.We
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first discuss the geometry of the resonator as well as the
location of the antennas that will be used to feed or detect
the microwaves. Next we consider a surface of section of
the classical motion within this geometry, in order to
verify that we fulfill the conditions to obtain echoes.
The relation of the echo period to the classical scattering
dynamics will be touched upon, and then we proceed to
show and discuss the experimental results.

The geometry of the billiard (Fig. 1) is given by a
Gaussian as an upper boundary and a parabola as a lower
one,
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The parameters have been chosen as � � 0:161, � � 0:2,
and � � 0:1, and � � 5 cm is a scaling factor. The bil-
liard extends from x � �25 cm to x � 25 cm and shows
a stable fundamental periodic orbit along its symmetry
axis at the middle and two unstable ones in the necks
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where the distance between both boundaries is minimal.
In the following the part of the billiard between the
unstable orbits is called the interior, and the complement
the exterior. The circles in Fig. 1 refer to the positions of
the antennas. They are located in the exterior of the
billiard. Note that a direct transmission of microwaves
through the billiard is not possible.

The Poincaré section of the billiard, which has been
obtained from a classical ray tracing simulation of parti-
cles in order to illustrate the classical trajectories, is
shown in Fig. 2. Each point corresponds to a reflection
on the lower boundary, where the Birkhoff coordinates
refer to the arc length of the point of impact on the
boundary and to the tangential component of the momen-
tum with respect to that boundary. One clearly can see an
island of stability which has been obtained from trajec-
tories confined to the interior of the billiard. Its center is
an elliptic fixed point corresponding to the fundamental
stable orbit. A chaotic layer which surrounds the island
results from the exterior region; here we find two hyper-
bolic fixed points, associated with the two unstable orbits.
This situation is generic. It corresponds to the one of a
pendulum with a perturbation [22]. Here the scattering
trajectories take the place of the revolutions of the pen-
dulum while the oscillatory island remains in place.
Because of the perturbation, the separatrix is deformed
mainly near the two unstable points, resulting in a chaotic
layer.

Particles have a characteristic time for one revolution
about the stable island. Each time they approach one of
the necks of the billiard, they have a chance to escape.
Thus from the exterior regions particles can be observed
to leave the interior region periodically at certain times
after an emission of a particle ensemble, and classical
echoes arise.
FIG. 2. A Poincaré section of the open billiard consists of a
stable island and a surrounding chaotic layer with two hyper-
bolic points. Each point in the section corresponds to the angle
of reflection � and arc length l of a point of reflection at the
lower boundary of the billiard. The rectangle enclosing the rhs
unstable fixed point shows a heteroclinic structure.
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The rectangular area around the right-hand side (rhs)
unstable fixed point displays a complicated structure of
tendrils. This is a typical signature of horseshoe construc-
tion (for details, see [21]) underlying the dynamics of the
system. This horseshoe is characterized by a parameter �,
which gives a hint on the degree of chaoticity of the
system and can be obtained from the lengths and widths
of the tendrils. The parameter � is related to the period T
of the echoes as

T � ���2log3�� 3=2�: (2)

The quantity � is the average time between two reflec-
tions at the lower boundary. It can be sufficiently esti-
mated from the size of the scattering center, i.e., from the
length of the stable orbit in our billiard. The development
parameter of the horseshoe can be expressed as � � 3�8.
In this conventional notation, the base corresponds to the
number of outcoupling channels plus one for the interior
region. This yields an echo period of T � 4:67 ns, which
matches very well with the result obtained from the
classical simulation of T � 4:67� 0:62 ns. The error re-
sults from the finite width of the echoes.

The quantum billiard was studied in the experiment
using a microwave cavity sufficiently flat so that the
vectorial Helmholtz equation for the electromagnetic
field is reduced to the scalar Helmholtz equation for the
electric field alone which is equivalent to Schrödinger’s
equation for a particle in a quantum billiard [2,3]. The
billiard was constructed from lead covered copper plates
as in [23].

Measurements of the transmission parameters Sij
through the cavity, where i and j denote a pair of anten-
nas, have been performed for the billiard at room tem-
perature in open air as well as in the superconducting
state when the billiard has been put into a copper box
evacuated and cooled down to 4.2 K. In order to guarantee
FIG. 3. Spectrum obtained from a measurement of the trans-
mission parameter jS12j between antennas 1 and 2 in the
superconducting resonator. The arrows mark four narrow reso-
nances. More of those are detected with other antenna combi-
nations. All sit on top of a continuous spectrum.
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the openness in the latter case, the openings of the billiard
as well as parts of the box were stuffed with a urethane
based microwave absorber EMC CRAM-AR (HP). By
this foamlike material an attenuation of microwave
power by 2 orders of magnitude was achieved for fre-
quencies larger than 6 GHz. Below this frequency, the
absorption is not uniform, which turned out not to be a
disadvantage, because the measured amplitudes are small
in this regime. Furthermore, to show that the use of these
absorbers is equivalent to maintain an open system, we
performed experiments at room temperature in open air
with and without the absorbers. The results coincide.

The measurement consisted of obtaining S-matrix
transmission parameters using a vectorial network ana-
lyzer HP-8510C. Figure 3 shows a spectrum for jS12j in
the superconducting case. The spectrum is continuous,
and several sharp resonances are visible. To get the im-
pulse response in the time domain, a Fourier transform
was performed on all spectra using a windowed fast-
Fourier-transform (FFT) routine. The upper part of
Fig. 4 shows the time signals corresponding to the data
of Fig. 3, and the inset exhibits the same at much longer
times. In the lower part the signal obtained from the same
measurement at room temperature is displayed. In both
time spectra no transmission is seen below a certain offset
time, which reflects the minimum time the signal needs
to propagate through both the cables to and from the
billiard and the billiard itself. One clearly sees periodic
oscillations, which are shown to be the predicted quantum
echoes. In some measurements with the superconducting
resonator, more than 100 echo periods were identified as
can be seen from the inset. In addition, some huge peaks
FIG. 4. Time spectra resulting from a FFT of the spectrum in
Fig. 3 (upper part) and from the same measurement at room
temperature (lower part). The arrows indicate the early visible
echoes. The additional large peaks are caused by standing
waves on the cables from the rf source to the resonator and
from the resonator to the network analyzer. The different offset
times in the upper and the lower part are due to different cable
lengths. The inset shows echoes at very late times. They could
be detected only in the superconducting case.
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appear in the time spectra. They are due to standing
waves on the cables as has been checked by varying the
cable lengths. Thus they are well understood and do not
affect the experimental results.

To show that the observed echoes are the ones pre-
dicted [17], we first introduced a metal disk into the inner
part of the billiard. From a classical point of view, this
destroys the stable island in phase space, which is the
theoretical basis for the echoes. Indeed the experiment
reveals that the echoes disappear (the corresponding fig-
ure is not displayed). Second, the model does not only
predict echoes to be detected on both sides of the cavity
outside the necks, but also that those on the rhs should
appear in counter phase to those on the left-hand side. In
Fig. 5, two transmission measurements at room tempera-
ture are presented. The upper part shows the measured
jS23j parameter between antennas 2 and 3 (cf. Fig. 1),
while the lower part similarly exhibits jS12j. Note that the
upper part corresponds to a transmission through the
cavity, while the lower part shows a reflection, though
measured by a transmission experiment for two antennas
at the same side. Comparing the upper and the lower part
of the figure we clearly see the predicted counter phase
behavior.

We now discuss two important features of the results.
First, it is clear (e.g., from Fig. 5) that the period of the
echoes gets shorter as a function of time. If we analyze
the data for the superconducting cavity (cf. Fig. 4, upper
part) we find that the period of the echoes starts at 4:2�
0:25 ns and slowly decreases to stabilize near 3:3�
0:25 ns. Second, a semilog plot (not displayed) of the
same data reveals after roughly ten oscillations an ex-
ponential decay of the average intensity over almost two
decades.

Both phenomena can be understood in terms of the
classical phase portrait (cf. Fig. 2) and the concept of
FIG. 5. Comparison of transmission measurements between
antennas on different sides (upper part) and on the same side
(lower part) of the resonator. A shift of the peaks by about half
a period is visible as expected from the classical model. Note
the shortening of the echo periods T with time.
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dynamical tunneling through integrable areas. As our
antennas lie outside the necks no power is injected into
the system inside the island. Thus the inside can exclu-
sively be populated by tunneling, while for the chaotic
layer tunneling may compete with evolution along clas-
sically allowed trajectories. At any rate the intensity on
average drops with increasing penetration depth into the
island. The time for emission from the chaotic layer and
from inside the island also increases as we receive the
signal from deeper layers. From the interior of the island
the tunneling decay should be exponential, while we
expect both tunneling and direct contributions from the
chaotic layer. It is thus quite clear that we receive the
outgoing signal and, particularly, the echoes from ever
deeper inside the island as time advances. At this point it
is important to note that the rotation period of the island
in our case decreases from the edge, i.e., from the chaotic
layer towards the interior, which is indeed the typical
situation, though exceptions can be constructed. Thus we
expect shorter periods for the echoes as time advances in
accordance with the experiment. The echo period stabil-
izes and according to this picture we must assume that we
are now seeing tunneling from a fixed penetration depth
of the island. This implies that the effective barrier is also
fixed and that we should see exponential decay, as we
indeed do. The asymptotic period can be determined
either directly by the innermost states or more probably
by the fact that, as we penetrate deeper into the island, the
small absorption of the cavity wall that remains even in
the superconducting case begins to dominate the emission
through the barrier.

This picture indicates that the first echoes stem from
the edge of the island or from the chaotic layer, and thus
we can invert Eq. (2) to find a value �log3� � 7:1� 1:3.
This is compatible with the value of 8 determined from
theory, but probably even the wave packet causing the first
echo penetrates the island slightly and therefore has a
period which is a little shorter than the classical one.

Summarizing we can conclude the following: We do
see the classical echoes predicted and the properties agree
qualitatively and quantitatively well with what we expect
from classical and semiclassical arguments. It is notable
that this agreement is achieved in a regime quite far from
the semiclassical limit. It is precisely this fact that allows
the waves to penetrate deep into the classically forbidden
region and to reveal classical revolution times, which are
not accessible in a classical scattering experiment.
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