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Whispering Gallery Modes Inside Asymmetric Resonant Cavities
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Two dimensional resonators with a smooth strictly convex boundary are known to possess a
whispering gallery region supporting modes concentrated near the boundary. A new class of asym-
metric resonant cavities is introduced, where a whispering gallery-like region is found deep inside the
resonator. The construction of such resonators is a novel application of the geometric control methods.
The results of numerical simulations and experiments are presented.
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FIG. 1 (color online). Constant width curve and two period
orbits. Phase portrait of the ray dynamics, where � is the
natural parameter along the boundary and � is the angle
between the outgoing ray and the tangent.
Introduction.—Asymmetric resonant cavities (ARC)
have been studied since the early 1990s. Historically,
the study was initiated by the invention of circular micro-
lasers (or microdisk lasers) by McCall et al. [1]. In these
lasers the excitation is supported by the whispering gal-
lery region near the edge of the resonator. The phase
space in the whispering gallery region is rich with in-
variant curves (which separate the phase space and are
impenetrable for the classical orbits), which enhances an
excitation mode and, ultimately, leads to lasing.

After this discovery, researchers went on to study the
deformed circular resonators to gain directionality that
was lacking in the circular microlasers; see, e.g., [10] and
references therein. This search culminated in the discov-
ery of bow tie lasers [2], where the lasing mode has a bow
tie pattern following a four periodic orbit of the ray
dynamics in a deformed cavity. These lasers are already
available in research labs, and there is a clear potential for
application in fiber-optics communication and medicine.

Another source of interest in ARC is quantum chaos
[3–5]. ARCs provide a natural experimental testbed for
the systems with full or partial classical chaotic behavior
where one can study the corresponding quantum or wave
dynamics. One of the most interesting phenomena in this
interplay of classical and quantum dynamics is quantum
tunneling, where an invariant region in the phase space,
which is impenetrable for the classical particle, is acces-
sible to the quantum particle. Therefore, there is an in-
creasing demand for new types of cavities with mixed
dynamics (chaotic and regular).

In this Letter, we introduce a large class of ARCs with
a ‘‘whispering gallery region’’ located deep inside the
cavity. This interior whispering gallery region (IWG)
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separates the phase space into the two mostly chaotic
regions. By contrast, the ‘‘classical’’ whispering gallery
(Lazutkin) region is located right at the boundary and,
therefore, does not separate the phase space. For small
deformations of the circle or the ellipse, the dominant
portion of the phase space is near-integrable, and then a
whispering gallery region occupies the whole cavity. To
illustrate the concept of IWG, we consider constant width
curves; see Figs. 1 and 2.

These are smooth convex curves whose widths (i.e., the
lengths of orthogonal projections) are the same for all
directions. Equivalently, each point is the foot point of a
diameter, a chord orthogonal to the curve at both its ends.

One such curve is shown on the left side of Fig. 1; the
right side shows the dynamics of the Poincaré map for the
light rays bouncing of the curve: a ray is represented by
its intercept point of the boundary (horizontal coordi-
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FIG. 2 (color online). Constant width curve. Magnified phase
space near the middle line and a quasibound mode concentrated
near the caustic. Quasibound mode is a solution of the
Helmholtz equation 	u� k2n2u � 0 with n � 3:5 inside the
cavity and n � 1 outside of the cavity.
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nate) and the incidence angle between the ray and the
tangent line to the boundary (vertical coordinate). Several
trajectories are shown. It is easy to see from the phase
space plot that the middle line (the line � � �=2) is an
invariant curve, which is the consequence of the property
of constant width curves mentioned above: any light ray
coming out at the normal direction will be orthogonal at
the opposite point on the boundary.

The middle line consists of two periodic points of the
Poincaré map, and a variant of Lazutkin’s theorem [4,6]
implies the presence of infinitely many invariant curves
accumulated near the middle line (Figure 1 (left) shows a
trajectory corresponding to one of such invariant curves)
and forming a distinct IWG region.

While this region does separate the phase space, it has
an important drawback if one would try to use such
shapes in optics. The bouncing ball modes, corresponding
to the rays orthogonal to the boundary, would be very
lossy and would not, therefore, be lasing. This explains
why these shapes, while known for a long time, have not
been used in practice.

Can one construct a shape such that, in the classical
dynamics picture, the IWG region would be away from
both the boundary and the middle line, so the rays would
be classically trapped in one of the (presumably) chaotic
domains separated by the IWG region? In the case of
microdisk lasers, ideally, the invariant curve would have
to be located almost entirely outside the region bounded
by the lines corresponding to the points of total internal
reflection �cr. Then we might expect that the light would
mainly escape at the location corresponding to this maxi-
mum and have strong directionality.

For real life ARCs (and certainly for microdisk lasers)
the invariant curve carrying only periodic orbits will not
survive, but a near-integrable Lazutkin region will ap-
pear with the usual panoply of periodic orbits, elliptic
islands surrounding them, invariant curves and chaotic
regions between them. One would expect, in the wave
picture, a family of quasimodes or resonances localized
near the original rational caustic. In microdisk laser
applications, for example, such resonances would corre-
spond to modes with emission patterns sharply localized
near the regions where the original, nonperturbed caustic
is closest to the critical level �cr.

Classical billiard model.—In systems with interfaces
between materials possessing different optical properties,
the geometric optics approximation usually leads to the
billiard dynamics, where a point mass moves along the
straight lines between elastic impacts with the interface.
We approach the problem of designing a cavity with IWG
region by constructing curves defining billiard dynamics
with full continuous families of periodic points. Note that
the invariant curves carrying only periodic orbits are
highly degenerate, as they are destroyed by a generic
Hamiltonian perturbation (e.g., smooth deformation of
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the boundary). By contrast, the so-called Kolmogorov-
Arnold-Moser invariant curves survive the perturbation
as they carry quasiperiodic motions with sufficiently
incommensurable frequencies (in order to handle the
small divisor problems).

Nevertheless, in the neighborhood of the curves carry-
ing periodic orbits, one can apply Lazutkin’s theorem to
show that there are Kolmogorov-Arnold-Moser curves in
the immediate vicinity of the curve which itself becomes
destroyed [4,6,7].

Nonholonomic mechanics construction.—To construct
billiards with continuous families of periodic orbits, we
use nonholonomic mechanics construction. We illustrate
our construction for billiards with full families of two
period orbits (constant width curves). The obvious ex-
ample of such a curve is the circle that can be obtained by
taking the chord of unit length and rotating it around its
center. A more general curve of constant width can be
obtained by letting the instantaneous center of rotation
slide along the chord. Equivalently, we consider the fol-
lowing nonholonomic system: the chord is moving in
such a way that its end points move orthogonally to the
chord (e.g., counterclockwise). This is just a variant of the
famous Chaplygin’s skate system [8].

Let us first show that this system is indeed nonholo-
nomic, i.e., the constraints are not integrable. Using
Cartesian coordinates for the chord’s end points �x1; y1�,
�x2; y2� and denoting by  the angle of the chord with the
abscissas, we write the constraints in the form

_y1
_x1

�
_y2
_x2
� cot� �;

and since one of the constraints is satisfied if and only if
the other one is, we are reduced to just one of them: dy1 �
cot� �dx1 � 0. The obtained differential form defines a
distribution which is well known to be nonintegrable. The
problem of constructing the closed curves of constant
width, therefore, reduces to finding closed curves in the
�x1; y1;  � space tangent to this distribution. By using
133902-2
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geometric control methods [8], it is possible to construct
many examples of such curves.

While the cavities with full family of two period orbits
can be found by other methods, the cavities with three and
higher period orbits are harder to find and the geometric
control tools seem to be indispensable.

We now concentrate on the three period case, which
both requires new methods and is more interesting for
applications, as the corresponding family of three peri-
odic orbits that we are going to construct (and the adjoin-
ing IWG region) depends on the shape, in contrast with
the curves of constant width (two periodic case), where
IWG was forced to be located at the middle line.

Specifically, consider a triangle and let its vertices
move orthogonally to the bisectors with arbitrary positive
velocities in, say, the counterclockwise direction. Simi-
larly to the case of curves of constant width, the vertices
will locally traverse the boundary of a billiard curve with
a continuous family of three periodic orbits.

It is interesting to observe that this construction is a
natural generalization of the ancient string construction
of an ellipse. Indeed, take the closed string and pull it
tight around three vertices. If we now move one of the
vertices, keeping the string tight, then it will draw an
elliptic arc. By allowing the movement one vertex at a
time, we obtain elementary ‘‘displacements.’’ By apply-
ing a sequence of these elementary displacements in the
limit of small displacement, we obtain the above non-
holonomic system. As one might expect, the action,
which is the distance between the vertices, plays an
important role here.

A natural description of the resulting nonholo-
nomic system can be obtained if one considers the tri-
angle perimeter A�z1;z2;z3��dist�z1;z2��dist�z2;z3��
dist�z3;z1�, as Hamiltonian (here zi � �xi; yi� are the ver-
tices of the triangle). Hamiltonian flows corresponding to
the contractions of dA, with the (degenerate) Poisson
structures given by the co-area forms @xi ^ @yi ; i �
1; 2; 3, span the tangent planes to a distribution.

Clearly, the perimeter of the triangle is conserved
under such displacements. Hence, the above construction
generates a three dimensional distribution in a five di-
mensional manifold of triples �z1; z2; z3� of constant pe-
rimeter (rescaling, we may assume that the perimeter is
equal to 1).

Using standard approach (see, e.g., [8]), one can show
that this distribution is completely nonintegrable and,
therefore, generates a nonholonomic dynamical system.
More generally, analogous construction for the k-gons
yields a nonholonomic dynamical system of rank k in
�2k� 1�-dimensional manifold of k-gons of constant
perimeter.

Now we return to the question of existence of closed
trajectories tangent to our nonholonomic distribution. It
is clear that there is a family of nontrivial examples of
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such curves provided by ellipses (or circles): as it is well
known, ellipses define completely integrable billiard sys-
tems and thus possess continuous families of three peri-
odic orbits (indeed, of k-periodic orbits, for any k � 2).
However, in view of our applications, we want precisely to
avoid integrable domains. It is well known that many
domains with continuous families of two period orbits
can be constructed (constant width curves). Extending
these results, we prove constructively by using geometric
control methods, that such nonintegrable domains can be
constructed for periodic orbits of any period and that
there are very many of them.

Theorem.—Let �0 be a closed smooth strictly convex
plane curve possessing a closed family �0 of k-periodic
orbits. Then there exists a smooth infinitely many pa-
rameter deformation of the boundary curve �� , such
that each deformed curve possesses a closed family ��
of k-periodic orbits, which is a smooth deformation of �0.

Thus, we establish the existence of nonelliptic curves
(which are generically nonintegrable) with ‘‘rational
caustic’’ in the vicinity of a billiard curve possessing
the ‘‘rational caustic’’. Moreover, these billiard bounda-
ries form a smooth (infinite dimensional) manifold and
therefore they are easy to find numerically. Note that if
we start with an ellipse (or a circle) as �0, then, of course,
there exist deformations corresponding within the family
of ellipses, but there are also many nonelliptic ones, as
ellipses form only four parameter subfamily among the
curves of fixed circumference.

We have developed and implemented a numeric algo-
rithm generating billiard curves with closed continu-
ous families of k-periodic curves for small k. The algo-
rithm is based on a constrained optimization procedure
which searches for a curve with geometry close to a shape
with desired geometric characteristics within the class of
shapes with rational caustics. In our case, we attempted to
generate a curve with a pronounced maximum of the
curvature, corresponding to a peak of the invariant curve
in the solid-on-solid picture. Details of the algorithm will
be published elsewhere. One such billiard boundary curve
with three period orbits, is shown on the left side of Fig. 3.

The results of numerical simulations show that IWG
regions are supporting excitation modes which can lead
to highly directional emission patterns as on the plots in
Fig. 3 (center, right).

In the numerical simulations we used the following
parameters: n � 1 outside and n � 3 inside the cavity,
which correspond to the effective refractive index of
microcavities used previously [9].

A microcavity with the shape shown on Fig. 3 has been
manufactured and experiments have been performed. An
example of the measurement of the average emission
pattern is presented in Fig. 4. The microlaser is InP-based
GaA1InAs Quantum Cascade Laser. The effective mode
refractive index is neff � 3:25. The average diameter is
133902-3
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FIG. 3 (color online). Billiard with full family of three period orbits (left) and an excitation mode: real-space false-color plot
(right) and far field distribution plot (middle).
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�135 �m. The device boundary is very smooth (at most
20 nm roughness). The boundary surface was slightly
deviating from vertical, varying between 80–90	 (mea-
sured at another device with same processing). The device
operated at �10 K with the pulses of duration 50 ns and
the repetition rate of 18 kHz. The lateral resolution is
approximately 3	. The device is operating above thresh-
old at I � 1:13 A (Ith � 0:9 A). Two modes are active at
� � 7:5496 �m and � � 7:5900 �m.

Conclusion.—In summary, we have constructed a new
class of ARCs with the whispering gallery region inside
FIG. 4 (color online). Average (far field) emission pattern
measured from the microlaser with the same boundary as in
Fig. 3. Filled circles mark data points; the lines are guides to the
eye. Between measuring round one and round two, 1.5 hours
passed, but all parameters were kept constant. The difference in
the signal is due to mechanical imperfections of the setup and a
temperature drift.
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the cavity and away from the classical whispering gallery
at the boundary. A specific example of a microdisk laser
has been presented.
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