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Collective Polarization Exchanges in Collisions of Photon Clouds
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The one-loop ‘““vacuum” Heisenberg-Euler coupling of four electromagnetic fields can lead to
interesting collective effects in the collision of two photon clouds on a time scale order of magnitude
faster than one estimates from the cross section and density. We estimate the characteristic time for
macroscopic transformation of positive to negative helicity in clouds that are initially totally polarized
and for depolarization of a polarized beam traversing an unpolarized cloud.
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Some nonlinear aspects of vacuum electrodynamics
have been tested in experiments on Delbruck scattering
[1], i.e., the scattering of a photon off of the Coulomb field
of a nucleus, and in photon splitting [2], also in the
nuclear Coulomb field.

Essentially, these effects hinge on the one-loop effec-
tive Lagrangian density for processes in which four or
more electromagnetic fields of long wavelength com-
pared to the electron Compton wavelength come together,
as described by the Heisenberg-Euler interaction [3,4],
the fourth order term of which is
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where « is the fine structure constant and m is the mass of
the electron. (We use units 7 = ¢ = 1 throughout.)

The validity of the effective interaction term (1), for
long wavelength fields, can hardly be doubted.
Nonetheless, its confirmation in an actual photon-photon
scattering experiment would be a milestone of a kind. If
one puts in the numbers for photon-photon scattering
itself, the cross section is far too small to be measured
with current technology. Indeed the “light by light”
scattering discussed in the very interesting experiment
reported in Ref. [5] was the reaction y +y — e’ + e,
and does not test vacuum QED at the one-loop level.
However, Kotkin and Serbo [6] have pointed out that a
photon of one plane polarization, passing through a cloud
of photons that are polarized in a different direction in a
frame in which the collisions are head on, will experience
a polarization precession with an angular frequency,
I', =4a’n,ww./(15m*), where w, w, are the respective
frequencies of the impinging photon and the cloud and n,,
is the number density of cloud photons. This rate is to be
contrasted to the ordinary scattering rate of the imping-
ing photon, as derived from the cross section [7], I'y =
0.014 X a*m™*n,w’w}. In all situations in which
ww, < m?, I', is many orders of magnitude greater
than T',.

This polarization precession, from an effective aniso-
tropic index of refraction, originates in the coherent in-
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teraction through forward scattering of a single beam
photon with a large number of cloud photons. In this
Letter, we develop the theory of another collective inter-
action, now between two clouds of photons, also depend-
ing on coherent forward scattering. This interaction can
lead to helicity changes when photons of both clouds
initially all have the same helicity, and to depolarization
of one cloud when the other cloud is initially unpolarized.
The rate will now turn out to be of order I',,; divided by a
slowing factor log(N) where N is the number of photons
in a region of interaction of linear dimension 1/T e

To rederive the Kotkin and Serbo result, and to lay the
groundwork for the extension, we consider the complete
set of momentum states {g;} that are occupied in the
initial state in either cloud (whether singly or multiply
occupied). We take L; of (1) and truncate it by keeping
the parts of the fields that contain only creation and
annihilation operators for this set of momenta. The
momentum-conserving processes described by this inter-
action are just the forward scattering of beam photons
from cloud photons since comoving cloud particles (or
beam particles) do not scatter from each other in the
interaction, (1). The result, for the effective “forward”
Hamiltonian of the system, after substitution of the ca-
nonical expressions for the electromagnetic fields in
terms of creation and annihilation operators into —L; of
(1) and performing the space integral over a quantization
volume, V, is

Hiy = GV 0j0,[0"70) + {775 — (11/3)1017],

jm
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where G = 2a?/15m*, and where the indices j and m
extend over the momentum states defined above.

In (2) the products of photon annihilation and creation
operators for the beam modes, aj, a“}' , and for the cloud
modes, b}, b; (where x and y indicate the polarization
state and j enumerates the set of momenta), have been
reexpressed in terms of the operators,
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with the parallel set of definitions for the cloud operators,
taking a — b, 7 — £. The operators 703 /2, supple-
mented by an operator 7% /2, which will not explicitly
enter below, obey angular momentum commutation rules,
as do the operators Z /2. Since Hy,, only connects states of
identical umperturbed energies, we did not include a
contribution from an H; in (2). [We have made the tran-
sition from interaction Lagrangian to the interaction
Hamiltonian in (2) without regard to the fact that the
original L; contains time derivatives of the original ca-
nonical coordinates, A. This is consistent if we take oy
and w,, as simple parameters in (2) and do not translate
them back into time derivatives when we go to a
Heisenberg picture.] To follow the polarization of a single
beam photon of energy w passing through the cloud, we
can then write the Heisenberg equations for 7(¢) coming
from (2) as

%;(;) = —2GoV~'7() X [Z() — 3ZP) &)

where we have defined Z = memZ » and introduced a
vector v, defined as a unit vector in the two direction in
the internal space. [One should not confuse the three-
dimensional space that we have introduced using a spi-
norial representation for the polarization vectors with the
three-dimensional configuration space; we label vector
components in the former with (1,2,3) and in the latter
with (x, v, z).] For the case of an isolated beam photon
interacting collectively with the cloud photons, it is fairly
clear that we can replace the cloud operators, Z("®) by
their expectation values, since the back reaction from
beam interactions affects the cloud almost not at all.
If the cloud polarization is at an angle 6 to the X axis
and the cloud energies are reasonably narrowly clustered
around an energy w,., we have (Z®)/V = w1, cos(26),
(zWy)v = w1, sin(26). Since Eqs. (4) are now linear in
the operators for the beam particle, they hold for expec-
tation values. Taking the initial condition (7 (0)) = 1,
(7D @ (0)) = 0 for an initial beam polarization in the £
direction, and solving (4), we obtain the x, x component
of the polarization density matrix, P, =1/2+

(r91))/2,
P.=1- %Sinz(%’)[l — cos(I', )], ®)

where I', = 2Gww,n,.

Equation (5) recaptures the effects noted by Kotkin and
Serbo [6], and we refer the reader to their articles for more
discussion as to the possibilities of observations. To make
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one comparison to laboratory parameters, we define os-
cillation length as A = (I',)~! and express, in ordinary
units,

E..\2/1MeV
A=15X 10*9(%“> (ﬁ%)cm, (6)

where E,; = m*>c®/eh and E is the rms electric field of
the cloud. In the w; = 2.35 eV laser used in the experi-
ment reported in Ref. [5], the field strength was E/E.; =
1.5 X 107°, In this case, taking iw = 100 MeV leads to
an oscillation length of = 3 cm. (The pulse length for
this laser is a fraction of a millimeter; the free path for
ordinary photon scattering from the cloud under these
conditions is of the order of 10° cm.)

We further note that this photon-cloud interaction pro-
duces no effect on the short time scale if the inital polar-
izations are perpendicular, and we note that if the cloud is
unpolarized then there is no depolarization of the beam.
Turning to the case of two colliding clouds, for which
neither of these conclusions will hold, we assume for
simplicity that photon densities in the two colliding
groups are equal. Now we need to take the variables Z
on the right-hand side (R.H.S.) of (2) as well as the
variables 7 to be dynamic variables, rather than taking
their expectation values in the initial state.

This calculation is simplest in a helicity basis, however.
The forward interaction, H;,,, gives a matrix element for
the transition in which a state of a positive helicity photon
from one bath and a positive helicity photon from the
other bath makes a transition to a state with two photons
of negative helicities. We can easily express Hj, of (2)

now in terms of operators .JE, 7, which act in the two-
dimensional helicity spaces of the respective clouds, des-
ignated, respectively, as the “up” cloud and the “down”
cloud. The components 553) and n?) measure the spins in
the *£Z direction for the photons in the respective clouds,
thus the negative of the helicity in the case of the down-
moving photon. We choose both clouds to be essentially
monoenergetic, with energies w and w,. for the respective
up-moving and down-moving clouds; then we can ex-
press the forward Hamiltonian in terms of the collective
coordinates, £*) = zigf.i), ) = zmﬁi), where &) =
(W + i£@) /2, etc.
By direct transformation of (2) we obtain

Hyoe = Gow V' [2607T) 4+ 2609
— (11/3)1@1®], (7)

Now we pose the question of what happens beginning
with an initial state in which all N up-moving photons
have spin +1 and all N down-moving photons have spin
—1 in the Z direction. We can proceed, as in the earlier
case, by writing the equations of motion,
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plus the three equations in which 7 and Z’ in (8) are
interchanged. In the calculation leading to (5), we pro-
ceeded to a soluble problem by taking a factorized ansatz
that is equivalent, in our present problem, to the replace-
ment,

(€D (1) = (€D OXn ™ (). ©)

But for the initial state that we are now considering, all of
the mixing operators with = superscript have expectation
value zero, and it is clear that there would be no evolution
in time at all were the factorization ansatz valid. We
proceed instead to a calculation equivalent to solving
the full coupled operator equations.

The total Z component angular momentum in the new
internal space in which helicity is the basis, measured by
(€® + 9®)/2, is conserved. Thinking of the system as
an assemblage of spins with an upper tier of N spins all
initially pointed up and a lower tier all initially pointed
down, we enumerate the states that are connected to the
initial state (and to each other) by the Hamiltonian of (7).
Any number of the N spins in the upper tier, all initially
up, may be flipped, leading to N + 1 possibilities for the
magnetic quantum number of the this tier. The operators
E-&/4 and 7 - 77/4 are separately conserved, each with
eigenvalue (N/2 + 1)N/2. Therefore, for each value of
(é%)/2) in our set, there is a single upper tier configura-
tion that enters, and a single lower tier configuration as
well. We index the states by the number of flips plus one, i,
where i takes on the values 1,2... N + 1. We express the
operator products that occur in the Hamiltonian in this
basis,

(ilé-mli=1y=N—i+1D();
(i+1éem-ly=N—-i+2)(i—1);

i=1, ..N+1,

i=1, ..N+I

(10)

which come directly from the standard angular momen-
tum matrices. We solve numerically for a N + 1 compo-
nent wave function W(z), using the Hamiltonian (7) with
the substitution (10) and the initial condition W;(0) =
0;1, and then calculate the measure of average helicity
of the upper tier,

N N+1
R(t) =N = S W, ()P — 2i + 2N,
i=i i=1
e3Y)
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We perform these calculations for a series of values of N
and show the results as a function of scaled time, s =
I',t =2GNw_ wt/V. Figure 1 displays results for values
of N ranging from 8 to 512, equally spaced in log(N).

The data shown in the figure clearly suggest a charac-
teristic time of order F;' log(N) for a complete turnover
of the spins. We can gain a heuristic understanding of
these results. Instead of the set of operators .f? n we
introduce the bilinear forms:

u= if(‘)n(”;
7= 5(—)§(+);

Writing the Heisenberg equations of motion for these
operators by taking commutators with H;,. in the form
(7) and making the further substitution n® = —£0) we
obtain the closed set:

x = iEHn(), y = pHn),

w=¢0), (12)

Ni = w(z +y) + w2 = —x Ny = wx — uw,

Nz = xw — wu, Nw = —x + u, (13)

where the derivatives are with respect to the scaled time
s. Treating these equations as c-number equations [10]
with the initial conditionsx =y =z =u =0andw = N
allows us to write a single equation for w = w/N,
”) =2
5= o - - 2 (14)
ds? N
The initial condition is now w(0) = 1, w/(0) = 0. In
Fig. 2, we plot solutions of (14) and compare with the
numerical solutions to the complete equations. The fit is
good for values of R > 0.6. We also see that in the case of
solutions to (14) the equal spacing continues to values of
N = 10*, leaving little doubt of the logarithmic depen-
dence. It is possible to understand this limit analytically
from (14), capitalizing on the fact that when N — oo, the
solution is the familiar kink solution in a A¢* theory in
one dimension, w = tanh[((r — #,)/2)], then showing that
for large N, in the time region in question, the w?/N term
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FIG. 1. The function R(s/I',)) of (11), the mean helicity of the
up-moving cloud, for values of N = §, 16, 32, 64, 128, 256, 512
as determined from solutions of (8), plotted against the di-
mensionless scaled time, s. The curves for higher values of N
lie progressively farther to the right. Equal spacing of the
curves indicate a transition time increasing as log(N).

133601-3



VOLUME 93, NUMBER 13

PHYSICAL REVIEW

week ending

LETTERS 24 SEPTEMBER 2004

FIG. 2. The function R(s/I",) as determined from the solution
for the heuristic Eq. (12) for values N = 8§, 32,128,512,
2048, 8192 (solid lines). The dashed lines show the solutions
of the complete equations of motion (11), as plotted in Fig. 1 for
the first four values of N.

in (14) can be dropped in favor of changing the initial
value of w to 1—2/N, this in turn determining
to = log(2N).

To summarize briefly: In many-body systems in which
every particle of set A interacts with every particle of set
B, evolution times for macroscopic properties may be
much faster than one would have predicted based on cross
sections, even in the absence of initial phase relations
among the components that one might have anticipated
were necessary for such behavior. In the photon-photon
system, the effect is an extension of the known index-of-
refraction effects of photon polarization treated in
Ref. [6]. In the detailed example treated, there is total
oscillation back and forth between all positive helicities
and all negative helicities in both clouds.

The case in which one cloud with 100% polarization in
helicity collides with an unpolarized cloud is somewhat
more complex. Here we predict partial depolarization of
the polarized cloud. From (7) we see that photons in the
target cloud with the opposite helicity to those of the
beam cloud are effectively sterile. Therefore, we can
discuss the polarization changes of the beam cloud in a
manner similar to that of the calculation given above.
There remains an order I,/ log(N) rate of depolarization
after averaging over the configurations of polarization of
the individual photons in the target cloud. This is in
contrast to case of a single photon interacting with the
cloud discussed at the beginning of this Letter, where
depolarization takes place on the time scale 1/T;.

Our calculation was for an idealized system of plane
wave modes in a box, with (implicit) periodic boundary
conditions. Does it apply to realizable systems in which
the two clouds are in contact for a time of order
(box size/c)? It is clearly required that the characteristic
time for transformation be shorter than this contact time,
a criterion that is easily checked in any given situation. It
is harder to answer the question, ‘“Can the laboratory
photons in the two beams really sustain a coherent inter-
action over the whole of the macroscopic region (of order
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of a cm, in the numerical example mentioned above, but
now multiplied by a logarithm of the order of 100) for our
process to unfold?” We do not know how to address the
exact quantification of this question, although we believe
that the answer is “yes” for the case of the beams from
lasers and from synchrotrons. Another question concerns
the role of all of the modes that we have left out in using
the truncation that produced the forward Hamiltonian (2).
We anticipate that over the time scale 1/T s these modes
create junk that does not add up to anything macroscopi-
cally due to phase oscillations, as indeed they must in our
preliminary beam cloud calculation. In any case, we
believe that the “speed up” through the many-body in-
teractions that we have described here is interesting
enough to warrant serious attention to some of the harder
questions that arise.

Finally, we note the close similarity between the issues
discussed in this Letter and in Refs. [8,9], which dis-
cussed the possibility of speeded-up flavor transforma-
tions of colliding neutrino clouds. Although the equations
are quite similar, a critical difference is a term propor-
tional to £®5® on the R.H.S. of the analogue of (7) in the
neutrino case. This term destroys the speed-up process in
the simple model, with just two tiers of states, in which all
the couplings between the upper tier and lower tier neu-
trino states (in our N-spin terminology) are equal to each
other. In more realistic (and complex) situations, it is
possible that there would be speeded evolution, however.
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