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Caloric Curve for Mononuclear Configurations
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The caloric curve for mononuclear configurations is studied with a schematic model. We investigate
the dependence of the entropy on the density and effective-mass profiles. In finite nuclei, a plateau in the
caloric curve is a consequence of decreasing density and the destruction of correlations rather than an
indication of phase coexistence. The mononuclear regime is metastable with respect to binary fission at
low excitation energy and with respect to multifragmentation at high excitation. The statistical
framework presented here is suitable to treat scenarios where experimental conditions are set to favor
a population of highly excited mononuclei.
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Heavy compound nuclei (CN) are metastable objects,
i.e., local mononuclear entropy maxima that are sepa-
rated from the more stable dinuclear states by transition
regions of significantly lower entropy. Standard
statistical-model treatments of CN decay are predicated
on a time-scale separation between the CN formation
time and the time scales for simple (mostly single-
particle) decay modes as well as the massively collective
decay processes we call fission. The former are usually
treated using the prescriptions offered by Weisskopf [1] or
Hauser and Feshbach [2], while the latter are usually
treated by a transition-state formalism initially developed
for chemical reactions by Erying [3]. The distinction
between decay modes can be bridged in concept [4] and
practice [5]; however, the massively collective decay
channels can be retarded by transient delays [6].

It has been known for almost four decades that, below
approximately 1=3 of the saturation density �o, � matter
has a lower free energy than uniform nuclear matter [7,8].
However, mononuclear configurations at reduced density
can be reasonable subjects for statistical decay treatments
as long as they are either metastable or protected from
massively collective decays modes by transient delays.
Specifically with increasing excitation energy, an equi-
librium (i.e., local maximal entropy) mononuclear den-
sity profile can be reached, the decay of which can be
treated with only minor modifications to the well known
formalisms, as long as a time-scale separation exists
between formation and all conceivable decay modes.

This work does not deal with the important issue of
time-scale separation [9], only with the gross statistical
properties of mononuclei at high excitation energy. In
particular, we show that the relaxation of the density
profile of mononuclei, in pursuit of maximal-entropy,
causes the caloric curve T�"� (where T is the statistical
nuclear temperature and " is the excitation per nucleon)
to flatten out and exhibit a quasiplateau. We believe this
explains the nature of the caloric curve first studied by
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Wada et al. [10] and later by Pochodzalla et al. [11], and
for which systematics have recently been analyzed in
detail by Natowitz et al. [12].

The approximate saturation of the statistical tempera-
ture is primarily due to density reduction, but it is also
influenced by the evolution of the effective mass of nu-
cleons in the nuclear medium. The first effect is just the
sequestration of energy in the potential energy of nuclear
expansion. The energy spent on expansion reduces the
thermal part of the total excitation in much the same way
as the collective rotational energy does in the case of high
angular momenta CN.

The ratio of the effective mass to the bare nucleon mass
m�=m differs from one due to the finite range of the
nuclear force and the time nonlocality of the interaction.
The former effect, which is responsible for making the
optical model potential energy dependent, reduces m�=m
by a density dependent factor mk��� which must return to
one at low density. The time nonlocality can be thought of
as the coupling of low-lying surface modes to single-
particle degrees of freedom [13,14]. This collective effect
brings states down from high energy, increasing the
many-body density of states at low excitation energy.
The effective-mass factor, m!��0; T�, accounting for this
relocation of levels, while greater than one at low energy
and localized on the surface of the quantum drop, must
return to one in the limit of high excitation or low density
gradient.

We confine our analysis to a one parameter description
of expansion and the literature descriptions of how the
effective-mass terms evolve with density and excitation.
Our approach combines the physically transparent picture
of maximal-entropy mononuclear configurations found in
the recent work by Tõke et al. [15], with the effective-
mass change with excitation energy found in the works of
Natowitz, Shlomo, and collaborators [16].

The dominant term in the expression for the entropy of
a quantum drop of degenerate Fermi liquid can be written
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FIG. 1. Representative calculation of total excess entropy as a
function of expansion.
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where a is the level-density parameter and the thermal,
total, and expansion energies are U, E�

T , and EE, respec-
tively. With total particle number A, " and "E are the total
and expansion energies per particle. In the local density
approximation (LDA) [18], the level density depends on
the nuclear profile, the local Fermi momentum k, and the
effective-mass [19,20],
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The density profiles ���r� of the two isospin partners
(with index �) are taken to be the same functional form,
scaled in proportion to the number of nucleons. The native
(� � 0 MeV) radial profiles are of the ‘‘standard’’ type
with a Gaussian derivative,
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with effective sharp radius Ro � roA1=3 (ro � 1:16 fm)
and surface width b � 1:0 fm. The expansion is limited
to the one-dimensional self-similar family, i.e., ��r; c� �
c3�n�cr�: The expansion parameter c is found by max-
imizing the entropy, �
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The collective energy involved in expansion is taken as
the simple upside down bell shaped form, involving only
the central density, suggested by Friedman [21], "E�c� �

"b�1�
��0;c�
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�2: We have used "b � 8 and 6 MeV in the
present calculations. The energy required for expansion
using "b � 8 is almost identical to that calculated (with
Coulomb) using the logic of Myers and Swiatecki [22]
and a nuclear matter compressibility coefficient of Ko �
234. In this schematic model, "b � 6 MeV simply im-
plies a 25% reduction in the energy cost for expansion.

Execution of Eq. (4) not only finds the metastable
mononuclear expansion but also ensures that the surface
pressure is zero. This procedure is therefore logically
different from the physically unreal but true equilibrium
condition found by placing a drop in a box and having a
surrounding vapor supply a pressure.

We choose the phenomenological form for the effec-
tive mass suggested by Prakash et al. [20] and used by
De et al. [23]:
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with
132702-2
� � 0:3; ��T� � 0:4A1=3 exp���TA1=3=21�2	: (6)

(The T dependence requires knowing the caloric curve
[T�"�]. We solve this problem by iteratively starting with
the m�=m � 1 caloric curve. This iteration ensures that
the T is uniquely determined by " and satisfies the sta-
tionary condition.) The effective-mass factor is sup-
pressed in the bulk, peaks at the surface [24], and
degrades to one with decreasing density and increasing
thermal energy. These two many-body effects, to a large
extent, offset one another in near ground-state nuclei,
yielding a 
 A=8 for unexpanded 197Au, the nucleus con-
sidered here. However, the destruction of the cooperativ-
ity encoded in these two effective-mass terms does not
occur on identical energy scales. While the detailed den-
sity and the excitation energy dependence of these terms
are unknown, the present work shows how the gross
effects captured by these terms couple with expansion
to dictate the form of the caloric curve.

The excess entropies above the unexpanded (c � 1)
native shape are shown in Fig. 1. The maximum entropy
determines the equilibrium expansion and mononuclear
entropy SM�"�.

The reduction of the equilibrium central density with
excitation �c�"� (at the extremum in entropy) is shown in
Fig. 2(a) for these cases: m� � 1 with "b � 8 MeV and
m�=m � mk���m!��0; T� for both "b � 8 and 6 MeV.
Consideration of mk��� alone exhibits a reduction in the
central density similar to that withmk���m!��0; T�, while
consideration of mk���m!��0� leads to approximately the
same �c�"� as with m�=m � 1. Without the effective-
mass terms, the �c�"� dependence is almost identical
with the (extended) finite-temperature Hartree-Fock cal-
culation reported in [16]. As one should expect, the
decrease in density is more substantial with the reduced
energy cost of expansion. The central densities implied by
the maximal-entropy procedure used here with m�=m �
mk���m!��

0; T� and "b � 6 MeV are similar to those
extracted from caloric curve data (diamonds) reported
by Natowitz et al. [16]. On the other hand, �c�"� does not
132702-2



FIG. 3. Evolution of the level-density parameter a with ex-
citation energy per nucleon " for m�=m � 1 (dotted line),
�mk� (dashed line), and �mk��m!	 (solid line).

FIG. 2 (color online). (a) Central densities; (b) entropy sM
and excess entropy sEM (dashed line) per particle; (c) T as a
function of the excitation per nucleon " for 197Au. The cases
shown: unexpanded (dotted line); m� � 1, "b � 8 MeV (black
line); m� � �mk��m!	, "b � 8 MeV (thick dark-grey or red
line) and "b � 6 MeV (thick light-grey or green line). In
(a) the densities, extracted from apparent level-density pa-
rameters (diamonds) [26] and from Coulomb barriers (circles)
[25], are also shown.
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drop as quickly, over as narrow a range of energies, as is
suggested by the analysis of Coulomb barriers (circles) in
the work by Bracken, Viola, and collaborators [25].

Figure 2(b) displays the entropy per nucleon for the
native density profile (dotted line), as well as the mono-
nuclear (maximal) entropy per nucleon sM and excess
value sEM for m�=m � 1 with "b � 8 MeV and m�=m �
mk���m!��0; T� with both "b � 8 and 6 MeV. The excess
entropy allowed by relaxing the density profile is evident
as is a reduced rate of entropy growth for " < 3 MeV
when the effective mass is modeled by Eqs. (5) and (6).
This ‘‘reduction’’ is due to decreasing m�=m in the sur-
face region with increasing " (see discussion of Fig. 3).

The statistical temperatures [Fig. 2(c)] are found by
differentiation of the maximal entropies with respect to
excitation energy,

T � 1=
�
@sM
@"

�
: (7)

As a result of the extremum condition used to determine
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the entropies used in Eq. (7), the expansion parameter c is
uniquely determined by the excitation energy and the
condition of zero external pressure. The latter condition
implies that no thermodynamic work is done by nuclear
expansion.

As shown in [15] and implied in [16], the relaxation of
the density profile substantially flattens the temperature
rise with " (compare black dotted and solid curves). The
inclusion of the effective-mass evolution increases T for
" < 3 MeV and decreases it for " > 5 MeV, changes that
give the appearance of a plateau. Decreasing the compres-
sional energy constant reduces the value of the tempera-
ture of the pseudoplateau.

Figure 3 shows how the level-density parameter a
evolves along the metastability ridge. Without effective-
mass considerations (m�=m � 1, dotted line) a just in-
creases uniformly as the density drops with increasing ".
If only the mk factor is included (dashed line), a is
initially suppressed but grows faster with ". As the den-
sity of states grows with m�, the increase in the mk factor
provides positive feedback to the expansion process.
However, adding them! dependence (solid line) provides
a surface enhancement at low excitation, an enhancement
which dies by "� 2 MeV. We can therefore make the
following three statements. First, consideration of a mo-
mentum dependent interaction (mk factor) is required to
predict the expansion rate with ". Second, as the change
in the surface enhancement to a is essential for producing
the pseudoplateau, the plateau is a finite-size effect rather
than an indication of phase coexistence. Third, the height
of the pseudoplateau has to do with the energy cost of
expanding the finite system, and thus the surface and the
Coulomb energies are both important [26].

What relevance could these metastable mononuclei
have to reaction observables? At low energy, the mono-
nuclear density of states of 197Au is a reasonable subject
for study because the fission barrier is sufficiently large
that the mononuclear lifetime �M is longer than the
characteristic time for equilibration within the mono-
nuclear region of phase space �eq. At higher energies,
132702-3
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the time required to thermally populate the extended
fission shapes can transiently suppress the fission decay
width, increasing the energy region where decay within
the mononuclear family dominates the decay [6].

Because of the time required for shape equilibration,
the condition �eq < �M will be satisfied to higher excita-
tion energies in light ion, �, and p induced reactions than
for heavy-ion reactions. The decay width of equilibrated
mononuclei will be the sum of the widths for decay within
the mononuclear family and outside of this family into
the multifragmentation channel. However, as is the case
with fission, a transient delay (this time associated with
the amplification of density fluctuations [9]) is likely to
initially suppress the multifragment decay and increase
the energy region over which the mononuclear entropy
controls the decay process. After the transient delay, the
multifragment decay will contribute in proportion to the
multifragment density of states. To determine the latter,
one needs sMF, the entropy per particle for multifragmen-
tation, which depends on the prescription used for the free
volume [27,28]. A comparison of sM (for the case
m�=m � 1, at extracted temperatures) to sMF as a func-
tion of volume (taken from the ideal phase space model of
Das Gupta and collaborators [29]) indicates the follow-
ing: (i) The volume capturing 99.75% of the mononuclear
matter is much smaller than reasonable volumes for mul-
tifragmentation. (ii) sMF will exceed sM somewhere above
" > 3 MeV if a freeze-out volume of 3 times the unex-
panded volume is used. As the freeze-out volume is much
larger than the mononuclear volume, mononuclei can still
be considered metastable.

Finally, if an excited nucleus expands within the mono-
nucleus family, it can undergo an irreversible transition to
the higher entropy multifragmented state. One should
expect event averages sampling such a process to yield
fluctuations in excess of those for a reversible process. It is
therefore reasonable to suspect that the observed exces-
sive fluctuations of the kinetic energy [30] result from an
irreversible transition from a lower entropy (larger free
energy in a canonical treatment) but kinetically trapped,
mononuclear phase to the multifragmented phase. This is
equivalent to arguing that the ensemble (the event sam-
ple) is nonergodic [31]. However, as discussed above, this
transition is not required to explain a plateau in a caloric
curve.

This work makes use of several simplifying assump-
tions. These include the LDA [18], self-similar expansion
and the expression for the entropy itself (which ignores
the continuum and all detailed quantum structure), all
subjects that deserve further study. Nevertheless, this
work shows that a near plateau in the caloric curve should
be expected for a finite nuclear system due to the evolving
influence of the finite range of the interaction and collec-
tive effects as the system expands.
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