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Distribution of Spectral Widths and Preponderance of Spin-0 Ground States in Nuclei
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We use a single j-shell model with random two-body interactions to derive closed expressions for the
distribution of and the correlations between spectral widths of different spins. This task is facilitated by
introducing two-body operators whose squared spectral widths sum up to the squared spectral width of
the random Hamiltonian. The spin-0 width is characterized by a relatively large average value and
small fluctuations, while the width of maximum spin has the largest average and the largest fluctuations.
The approximate proportionality between widths and spectral radii explains the preponderance of spin-
0 ground states.
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FIG. 1 (color online). Six fermions in a shell with spin j �
19=2. Top: Probability that the ground-state has spin J (data
points); probability that spin J has the largest spectral width
(solid line); probability that the product rJ�J is maximal
(dashed line). Bottom: Scaling factor rJ between the widths
and spectral radii. Inset: Spectral radius R0 versus width �0

(data points) and the linear fit (line) for total spin J � 0.
(Results from 900 random realizations).
Introduction. Many regular features in the low-lying
parts of nuclear spectra can be attributed to a short-range,
attractive effective interaction with pairing and quadruple
components. It thus came as a surprise when Johnson,
Bertsch, and Dean [1] found that for even-even nuclei, an
ensemble of nuclear shell-model Hamiltonians with ran-
dom two-body interactions is likely to yield a spin-0
ground state. This is especially so since the probability
for a spin-0 ground state was found to be much larger than
the fraction of spin-0 states in the model space.
Subsequent work showed that similar regularities exist
in bosonic [2] and electronic [3] many-body systems with
random two-body interactions. Thus the phenomenon of
spin-0 preponderance seems a very robust and rather
generic feature.

The phenomenon has received intense attention, with
reviews [4]. Quantitative explanations for the spin-0
ground-state dominance were given for exactly solvable
boson [5] and fermion [6,7] systems, while mean-field
theory provides an understanding for the interacting bo-
son model [8]. For more complex fermion systems, the
situation seems more difficult. Approaches based on the
ensemble-averaged spectral widths, while useful for cer-
tain systems [9], failed to provide an explanation for a
single j shell [4,6,10]. Recently, Mulhall et al. [11] found
that the spectral centroids form a band or an inverted
band, depending on the sign of the effective moment of
inertia. However, in order to apply this result to the
ground-state energy, one needs, in addition, an under-
standing of spectral variances and their correlations for
different spins [4]. In another approach, Zhao et al. [12]
made quantitative predictions based on the diagonaliza-
tion of the individual two-body operators. However, the
success of this approach is not well understood.

As a key to the understanding of the preponderance of
spin-0 ground states, we propose in this Letter the distri-
bution of and the correlations between the widths of the
densities of states with spin J (in short: the spectral
widths). As a model system, we consider n � 6 fermions
0031-9007=04=93(13)=132503(4)$22.50 
in a shell with spin j � 19=2 which interact via a random
two-body interaction. The data points in the top part of
Fig. 1 show the probability that the ground state of this
system has spin J. This probability is rather large for
minimum and maximum spin while the relative dimen-
sions of the corresponding Hilbert spaces are very small.
Thus, the figure exhibits the puzzle pointed out in Ref. [1].
The solid line in the upper part of Fig. 1 shows the
probability that spin J has the largest spectral width.
This probability is sizable only for minimum and maxi-
mum spin. Thus, the preponderance of spin-0 ground
states is suddenly not a surprise any more! This observa-
tion prompts us to study the distribution functions for the
spectral widths, and the correlations between spectral
widths of different spins. This will eventually lead us to
2004 The American Physical Society 132503-1
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FIG. 2 (color online). Roots of the ten eigenvalues of the
eigenvectors B��J� versus J for six fermions in a j � 19=2
shell.
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a semiquantitative understanding of the preponderance of
spin-0 ground states.

The two-body random ensemble (TBRE). We consider
the Hamiltonian matrix H�J� in the dJ-dimensional
Hilbert space H �J� of n-fermion states with spin J for
a given two-body interaction. The latter has reduced
matrix elements (TBME) v�; � � 1; . . . ; a. In our model
system, there are a � 10 TBME since two fermions can
have spins j� � 0; 2; 4; . . . ; 2j� 1. The matrix H�J� is
linear in the TBME,

H�J� �
Xa
�

v�C��J�: (1)

The matrices C��J� transport the two-body interaction
into the Hilbert space H �J�. These matrices are deter-
mined entirely by the geometry of the shell model. They
are built of coefficients of fractional parentage and
angular-momentum coupling coefficients.

In order to obtain generic results, we assume that the
TBME are uncorrelated Gaussian-distributed random
variables with zero mean and unit variance, v� � 0 and
v�v� � ��� where the bar denotes the ensemble average.
Our results then apply to almost all two-body interac-
tions, the integration measure being the product of the
differentials of all the v�’s. The matricesH�J� are sums of
random variables and, thus, form a random-matrix en-
semble, the two-body random ensemble. For spins J � J0,
the matrices H�J� and H�J0� depend on the same random
variables v� and are thus correlated.

Distribution of spectral widths. The spectral width
�J of the states with spin J, a random variable, is defined
as

�2
J �

1

dJ
Tr�H2�J�� �

1

dJ

X
��

v�v�Tr�C��J�C��J��:

The trace appearing in the symmetric and positive
semidefinite a-dimensional overlap matrix S�� �

d�1
J Tr�C��J�C��J�� constitutes the canonical scalar prod-

uct for matrices and has been used before in a similar
context [13]. Diagonalization of S�� with the help of the
orthogonal, J-dependent matrix U yields the eigenvalues
s21�J� � s22�J� � . . . � s2a�J� � 0. We define B��J� �P
�U��C��J�. The B’s are orthogonal to each other in

the sense of the trace, d�1
J Tr�B��J�B��J�� � ���s2��J�,

and B� has the spectral width s�. In terms of the B’s,
the Hamiltonian reads

H�J� �
X
�

w�B��J�: (2)

The new Gaussian random variables w� �
P
�v�U��

obey w� � 0 and w�w� � ���. For fixed J, the
random-matrix model (2) is equivalent to the random-
matrix model (1).
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In the new basis, we have

�2
J �

X
�

w2
�s2��J�: (3)

The geometric aspects of the shell model are contained in
the square roots s� � 0 of the eigenvalues. Figure 2 shows
how the s� vary with spin J for our model system. For
each spin J there is one particularly large root s1. This
root increases almost monotonically with J. For each spin
there is one basis vector Ba�J� with eigenvalue zero. This
vector is given by the matrix representation of Ĵ2 � J�J	
1� where Ĵ denotes the spin operator. Indeed, Ĵ2 � J�J	
1� annihilates states with spin J and is a scalar two-body
operator. Hence, the matrix representation of Ĵ2 � J�J	
1� is a linear combination of the matrices C��J� and, at
the same time, an eigenvector of S�� with eigenvalue
zero. For large values of J, there is more than one zero
eigenvalue. This is because here the number of indepen-
dent matrix elements is smaller than the number of
TBME.

We first use Fig. 2 for a qualitative discussion of the
distribution of widths in the TBRE. Clearly, �2

J �
P
�s

2
�

attains its maximum value for maximum spin J � Jmax.
Among the low spins,�2

0 dominates because the root s1 is
almost constant for low spins, and the remaining nonzero
roots are exceptionally large for J � 0. As for the fluctu-
ations, we use two limiting cases for orientation: (i) All
roots are equal to s2. Then �2 � as2 and the rms variance
is

������
2a

p
s2. (ii) Only the root s1 differs from zero. Then

�2 � s21 and the rms variance is
���
2

p
s21. Thus, we expect

that in relation to the average width, the rms fluctuations
of �0 are smaller than those of the �J for large J.

For a quantitative analysis, we define the probability
distribution PJ��� � 2����2 � �2

J� for finding a value of
the width between � and �	 d�. The factor 2� stems
from the differential d�2 � 2�d�. For J � Jmax there is
132503-2
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only one nonzero root s1, and PJmax
is a Gaussian with

width s1. For general J, all the integrations over the w�’s
can be done, and the expression for PJ��� reduces to

PJ��� �
�
�

Z 1

�1
dteit�

2
Ya
��1

e�
i
2 arctan2ts

2
�

�1	 4s4�t2�1=4
: (4)

Figure 3 shows PJ��� for several spins J. This agrees very
well with the histograms from 900 realizations of our
TBRE.

Correlations of widths. The correlations between the
Hamiltonian matricesH�J� andH�J0� induce correlations
between the widths �J and �J0 . This fact is borne out by
the numerical simulation: Under the assumption that
width correlations can be neglected, we can use the dis-
tributions PJ��� to compute the probability that spin J
has a larger width than spin J0. Such a calculation yields,
e.g., that �0 >�4 with 60% probability. The numerical
simulation of the TBRE shows, however, that �0 >�4 for
93% of all realizations. Hence, there must be strong
correlations between the widths.

We again begin with a qualitative analysis. Let juJi
denote that eigenvector of the overlap matrix S���J�
which corresponds to the largest square root s1�J�.
Figure 4 shows the scalar products huJjuJ0 i as functions
of J� J0. Clearly, the eigenvectors juJi depend only very
weakly on J and are almost identical for total spins that
differ by just a few units. In particular, huJjuJ0 i decreases
very slowly with J for J0 � 0 (upper line in Fig. 4) while
the decrease is faster for J � Jmax (lower line in Fig. 4).
We see that for low spins up to values of 10 to 20, the
largest roots s1�J� and the corresponding eigenvectors are
almost independent of J. Because of these strong corre-
lations among roots of low spins, the contributions of the
largest roots s1 to the widths are simultaneously small or
simultaneously large for most realizations of the TBRE.
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FIG. 3 (color online). Normalized probability distribution
functions PJ��� versus spectral width �. The histograms result
from 900 random realizations for six fermions in a j � 19=2
shell. The line shows the theoretical result (4).
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In this way the correlations significantly enhance the
probability that spin J � 0 has the largest total width
among all low spins. Similar arguments show that the
maximum spin J � Jmax is most likely to exhibit the
largest-width for high spins. These statements are in
keeping with the numerical results presented in the upper
part of Fig. 1.

For quantitative results, we define the probability
p�J; J0� � ���2

J � �2
J0 � that spin J has a larger width

than spin J0, where � denotes the unit step function.
Introducing the eigenvalues q� of the matrix S���J� �
S���J

0�, we can perform the ensemble average.
Employing integral transforms, we arrive at

p�J; J0� �
1

2
	

1

�

Z 1

0
dt

sin�12
P
�
arctan2tq��

t
Q
�
�1	 4q2�t2�1=4

: (5)

This expression accurately describes the results of our
numerical simulation.

From widths to ground states. The bridge between the
spectral widths discussed so far and the spin of the
ground-state is spanned by the scaling factors rJ. These
are defined as follows. For each value of J, every realiza-
tion of the TBRE yields a spectrum EJ;i; i � 1; . . . ; dJ.
Let RJ � maxijEJ;ij be the spectral radius for spin J. For
each realization, RJ is given with equal probability either
by the energy of the lowest-lying level or by that of the
highest-lying level with spin J. The spectral radius is
related to the spectral width �J of that realization by
the inequality RJ � �J. However, our numerical results
show that the much stronger relation

RJ � rJ�J (6)

is approximately valid, with rJ constant (independent of
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FIG. 4 (color online). Data points: Values of the scalar prod-
ucts huJjuJ0 i of the largest-width eigenvectors juJi of the over-
lap matrices S�� � d�1

J Tr�C��J�C��J�� for J � J0. The upper
and lower line connect the data points corresponding to J0 � 0
and J � Jmax, respectively.
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the realization considered). This is shown in the inset of
Fig. 1. The scaling factor rJ � 1 (shown in the lower part
of Fig. 1) encodes information contained in the tails of the
spectral density. The average level density typically de-
creases exponentially fast for energies close to the spec-
tral radius. Thus, rJ is expected to depend logarith-
mically on the dimension dJ and on the average width.
Its odd-even staggering, for instance, reflects a similar
staggering of the dimensions dJ. In what follows, we
neglect the difference between the absolute values of
the energies of the highest and the lowest level in the
spectrum of each realization. Thus, we identify the prod-
uct rJ�J with the energy of the lowest-lying state with
spin J. It is then tempting to assume that the probability
distribution of RJ is simply given by that of �J scaled by
the factor rJ. Our numerical results show, however, that
the two distributions, although similar, do not really
coincide. However, the relation (6) is sufficiently accurate
to determine reasonably reliably the probability that rJ�J
is maximal. Indeed, this probability is plotted as the
dashed line in the upper part of Fig. 1. The agreement
with the data points is very satisfactory.

We have obtained similar results for n � 8 fermions in
a j � 19=2 shell. For the odd-number system with n � 7,
the ground state has more likely spin J � j than mini-
mum spin J � 1=2. Here we also found that minimum
and maximum spins are most likely to exhibit the largest
widths. However, the scaling factor r1=2 for minimum
spin is smaller than for its low-spin neighbors. This
reduces the probability that the ground state has mini-
mum spin. In particular, the probability that r1=2�1=2 is
largest is considerably smaller than the probability that
rj�j is largest.

Summary. We have studied the spin of the ground
state for the shell model with random two-body interac-
tions. To this end, we have derived closed expressions for
both the width distribution functions and the width cor-
relation functions. Using these results, we have shown that
spin-0 and maximum spin are most likely to exhibit the
largest widths. The spin-0 width is characterized by a
relatively large average value and rather small fluctua-
tions, while the maximum spin displays the largest aver-
age and the largest fluctuations. We have numerically
established an approximate proportionality between
spectral widths and spectral radii. This relation is suffi-
ciently reliable to explain the preponderance of spin-0
ground states in the shell model.

This work has been confined to a single shell with spin
j � 19=2. However, our results depend only upon geo-
metrical properties of that model and are thus expected to
apply similarly in other shells. We speculate that similar
considerations would also apply to other many-body
systems.

The distribution functions were calculated using super-
positions of two-body operators whose squared widths
132503-4
sum up to the average spectral width of the random
Hamiltonian. These operators may have further applica-
tions in nuclear structure calculations: Effective interac-
tions are often obtained from fitting two-body matrix
elements [14]. These procedures ideally should avoid gen-
erating linear combinations of two-body operators with
small or zero spectral widths.

Our work poses the intriguing analytical problem to
derive the eigenvalues s��J�. These are determined en-
tirely by the geometry of the shell model. Hence, the
values of the s��J� should be accessible by group-
theoretical techniques. An understanding of the scaling
factors rJ seems less difficult. It would require the knowl-
edge of the shapes of the average spectra. This would
allow us to determine rJ from the position of the lowest
level (found by integrating the normalized spectrum from
�1 to where the integral equals 1=2) and the width of
that spectrum.
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