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There exists the famous circle theorem on the Yang-Lee zeros of the ferromagnetic Ising model.
However, the Yang-Lee zeros of the antiferromagnetic Ising model are much less well understood than
those of the ferromagnetic model. The precise distribution of the Yang-Lee zeros of the antiferromag-
netic Ising model only with nearest-neighbor interaction J on L � L square lattices is determined as a
function of temperature a � e2�J (J < 0), and its relation to the phase transitions is investigated. In the
thermodynamic limit (L ! 1), the distribution of the Yang-Lee zeros of the antiferromagnetic Ising
model cuts the positive real axis in the complex x � e�2�H plane, resulting in the critical magnetic field
�Hc�a�, where Hc > 0 below the critical temperature ac �

���
2

p
� 1. The results suggest that the value of

the scaling exponent yh is 1 along the critical line for a < ac.
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The Ising model in an external magnetic field H on a
lattice with Ns sites and Nb bonds is defined by the
Hamiltonian

H � �J
X

hi;ji

�i�j � H
X

i

�i; (1)

where J is the coupling constant, hi; ji indicates a sum
over all nearest-neighbor pairs of lattice sites, and �i �
�1. The two-dimensional Ising model is the simplest
model showing phase transitions at finite temperatures,
and consequently it has played a central role in our under-
standing of phase transitions and critical phenomena.
Yang and Lee [1] proposed a mechanism for the occur-
rence of phase transitions in the thermodynamic limit and
yielded an insight into the problem of the ferromagnetic
(FM, J > 0) Ising model in magnetic field by introducing
the concept of the zeros of the grand partition function
(GPF) in the complex magnetic field plane (Yang-Lee
zeros). They [1] also formulated the celebrated circle
theorem which states that the Yang-Lee zeros of the FM
Ising model lie on the unit circle in the complex x �
e�2�H plane. Since then, numerous articles have dealt
with the various properties of the Yang-Lee zeros of the
FM Ising model [2]. However, the properties of the Yang-
Lee zeros of the antiferromagnetic (AF, J < 0) Ising
model [3–6] are much less well understood than those
of the FM model. It has been known that all Yang-Lee
zeros of the one-dimensional AF Ising model lie on the
negative real axis [3]. Suzuki et al. [5] studied the Yang-
Lee zeros of the AF Ising model on 4� 6 square lattice,
found the negative real zeros and the complex zeros with
Re�x� < 0, and concluded that the precise distribution of
the AF Yang-Lee zeros and its relation to the phase
transitions remain an open question.

In this Letter, we discuss the Yang-Lee zeros of the AF
Ising model by evaluating the exact GPF on L � L square
lattices. Because the Ising model for nonzero magnetic
field has the symmetry x $ 1=x, Yang-Lee zeros with
0031-9007=04=93(13)=130604(4)$22.50
jxj > 1 are obtained from those with jxj < 1 by the in-
version map x ! 1=x. With no loss of generality, we
consider only Yang-Lee zeros on the unit disk jxj � 1.

If we define the density of states, ��E;M�, with a given
energy

E �
1

2

X

hi;ji

�1� �i�j� (2)

and a given magnetization

M �
1

2

X

i

�1� �i�; (3)

where E and M are positive integers 0 � E � Nb and 0 �

M � Ns, the GPF of the Ising model Z �
P

f�ng
e��H , a

sum over 2Ns possible spin configurations, can be written
as

	Z�a; x� � e��JNb�HNs�Z�a; x� �
XNb

E�0

XNs

M�0

��E;M�aExM;

(4)

where a � e2�J and x � e�2�H. For AF interaction J < 0,
the physical interval is 0 � a � 1 (0 � T � 1), while for
FM interaction J > 0, the physical interval is 1 � a � 1
(1 � T � 0). The states with E � 0 (E � Nb) corre-
spond to the AF (FM) ground states.

The microcanonical transfer matrix (�TM) [7–9] is
used to evaluate the exact integer values for the density of
states ��E;M� for L � 14. For lattices L > 14, memory
limitations [10] required us to use the restricted canonical
transfer matrix (RCTM) which yields, for a fixed value of
a, the coefficients

!�M� �
X

E

��E;M�aE (5)

as real numbers of finite precision [11].
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While we lack the circle theorem to tell us the location
of AF Yang-Lee zeros, something can be said about their
general behavior as a function of temperature. At zero
temperature (a � 0) from Eq. (4), the GPF is

	Z�0; x� �
X

M

��0; M�xM � 2xNs=2 �L � even�: (6)

Therefore, the AF Yang-Lee zeros at T � 0 lie at x � 0.
At infinite temperature (a � 1), where the AF Yang-Lee
zeros and the FM Yang-Lee zeros become identical, the
GPF is given by [8]

	Z�1; x� � �1� x�Ns ; (7)

and its zeros are Ns-degenerate at x � �1.
Figure 1 shows the Yang-Lee zeros in the complex x

plane of the 14� 14 AF Ising model at several tempera-
tures with a cylindrical boundary condition. At high
temperatures (for example, a � 0:9), all zeros lie on the
negative real axis. They move toward x � �1 as the
temperature is further increased. As the temperature de-
ceases, complex zeros with Re�x� < 0 begin to appear
near x � �1. Lieb and Ruelle [6] showed that the loca-
tions [7,8] of the FM Yang-Lee edge zeros at a tempera-
ture above the critical temperature determine the region
free of the AF Yang-Lee zeros at the same temperature.
According to the Lieb-Ruelle theorem, at a � 0:9, the
region free of the AF zeros is the exterior of the circle
with center c � �12:471 and radius r � 12:430, and at
a � 0:5, it is the interior of the circle with c � 1:003 and
r � 0:078. The results in Fig. 1 are consistent with Lieb-
Ruelle theorem. As a approaches the critical temperature
ac �

���
2

p
� 1, the number of complex zeros with Re�x� <

0 increases, but the negative real zeros near x � 0 still
exist. As shown in Fig. 1(c), at a � ac, two complex zeros
with Re�x� > 0 are finally revealed. As the temperature is
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FIG. 1. Yang-Lee zeros in the complex x plane of the 14� 14
AF Ising model with cylindrical boundary condition for
(a) a � 0:9, (b) 0.5, (c)

���
2

p
� 1, and (d) 0.1.
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further lowered, all zeros move toward x � 0, and the
number of complex zeros with Re�x� > 0 increases. For
example, as shown in Fig. 1(d), at a � 0:1, the number of
complex zeros with Re�x� > 0 is 8. Table I shows the
classification of the AF Yang-Lee zeros as a function of
temperature for cylindrical and free boundary conditions.
The distribution of the AF Yang-Lee zeros for free
boundary condition is similar to that for cylindrical
boundary condition. However, the number of complex
zeros with Re�x� > 0 for free boundary condition is less
than or equal to that for cylindrical boundary condition.

Figure 2 shows the Yang-Lee zeros in the complex x
plane of the L � L AF Ising model at a � 0:2 with
cylindrical boundary condition for (a) L � 8, 10, 12,
and 14 and (b) L � 9, 11, and 13. As shown in the figure,
the zeros with the largest value of Re�x� approach the real
axis as L increases.We call these zeros as the first zeros x1.
The first zeros for odd sizes approach the real axis slowly
compared to those for even sizes. Table II shows the real
and imaginary parts of the first zeros x1 at a � 0:2 for
L � 8–18 (even sizes) and cylindrical boundary condi-
tion [12]. By using the Bulirsch-Stoer (BST) algorithm
[13], we extrapolated our results for finite lattices to
infinite size and, for ! � 1 (the parameter of the BST
algorithm), obtained x1 � 0:007 33�6� � 0:000 01�4�i, in-
dicating the phase transition of the AF Ising model in an
external magnetic field. The extrapolated result is consis-
tent with values by approximate closed-form expressions
[14] for the critical line of the AF Ising model. The BST
result from odd sizes is x1 � 0:0078�2� � 0:000�2�i for
L � 9� 17 and 0:0075�3� � 0:000�1�i for L � 11� 19,
which is less accurate than that from even sizes. In the rest
of the Letter, we consider only even sizes for the BST
extrapolation. Itzykson et al. [15] showed that the imagi-
nary part Im�x1� of the first zero vanishes in the limit
TABLE I. The classification of the Yang-Lee zeros for the
14� 14 AF Ising model with cylindrical (free) boundary
condition. The total number of the AF Yang-Lee zeros on the
unit disk jxj � 1 is 142=2 � 98. N�real�, N�Re�x� < 0�, and
N�Re�x� > 0� denote the number of negative real zeros, the
number of complex zeros with Re�x� < 0, and the number of
complex zeros with Re�x� > 0, respectively. The numbers in
parentheses are those for free boundary condition.

a N�real� N�Re�x� < 0� N�Re�x� > 0�

0.9 98 (98) 0 (0) 0 (0)
0.8 94 (94) 4 (4) 0 (0)
0.7 86 (90) 12 (8) 0 (0)
0.6 78 (82) 20 (16) 0 (0)
0.5 66 (70) 32 (28) 0 (0)���
2

p
� 1 56 (62) 40 (36) 2 (0)

0.3 50 (52) 44 (42) 4 (4)
0.2 46 (44) 48 (50) 4 (4)
0.1 46 (40) 44 (54) 8 (4)
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FIG. 2. Yang-Lee zeros of the L � L AF Ising model at a � 0:2 with cylindrical boundary condition for (a) L � 8, 10, 12, and 14
and (b) L � 9, 11, and 13. In (b), the zeros on the negative real axis between �1 and �0:04 are omitted. The numbers of the omitted
zeros are 5, 6, and 7 for L � 9, 11, and 13, respectively.
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L ! 1 following the finite-size scaling

Im�x1� � L�yh : (8)

From this scaling law we obtain the scaling exponent [9]

yh�L� � �
lnfIm�x1�L � 2��=Im�x1�L��g

ln��L � 2�=L�
(9)

for finite lattices. The fourth column of Table II shows the
values of the scaling exponent yh�L�. The extrapolated
value (! � 1) is yh � 1:00�3�, indicating that the exact
value of the scaling exponent yh may be 1.

Similarly, with ! � 1, we have obtained x1 �
0:000 396 29�4� � 0:000 000�3�i and yh � 0:99�3� for a �
0:1, and x1 � 0:0505�2� � 0:0002�7�i and yh � 0:98�8�
for a � 0:3. The extrapolated values for x1 are in excel-
lent agreement with those by closed-form approximations
[14]. The extrapolated values for yh are consistent with
yh � 1. For free boundary condition, the extrapolated
values (! � 1) are x1 � 0:000 40�7� � 0:000 00�1�i and
TABLE II. The real and imaginary parts of the first zeros x1
at a � 0:2 for L � 8–18 (even sizes only) and cylindrical
boundary condition. yh�L� is the scaling exponent calculated
by Eq. (9). The last row is the BST extrapolation to infinite size.

L Re�x1� Im�x1� yh�L�

8 0.002 698 29 0.007 395 14 0.613 694
10 0.004 45178 0.006 448 71 0.770 260
12 0.005 432 77 0.005 603 80 0.855 450
14 0.006 024 46 0.004 911 49 0.906 055
16 0.006 402 87 0.004 35180 0.938 070
18 0.006 656 37 0.003 896 59
1 0.007 33(6) �0:000 01�4� 1.00(3)
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yh � 0:99�8� for a � 0:1, x1 � 0:00725�3� � 0:0001�3�i
and yh � 1:0�1� for a � 0:2, and x1 � 0:050�5� �
0:001�4�i and yh � 0:8�2� for a � 0:3. These values are
less accurate than those for cylindrical boundary condi-
tion. Figure 3 shows that the extrapolated values of x1
are in agreement with the results of closed-form
approximations. In the figure, the Wu-Wu approximation
[14] and the Wang-Kim approximation [14] are not dis-
tinguishable, but their results are slightly different. For
example, the Wang-Kim approximation results in x1 �
0:007 03 . . . for a � 0:2 whereas the Wu-Wu approxima-
0.0 0.1 0.2 0.3 0.4

a
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x

FIG. 3. The extrapolated values of x1 as a function of a for
cylindrical (circles) and free (squares) boundary conditions.
The extrapolated values are obtained from L � 8� 18 for a �
0:3 and from L � 8� 20 at a � 0:35. The solid line represents
the results of closed-form approximations.
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tion gives x1 � 0:007 33 . . . in better agreement with the
extrapolated value 0.007 33(6).

The value of yh � 1 may imply � � �2yh � d�=yt � 0
and the logarithmic divergence of the magnetic suscepti-
bility along the critical line. It is known that the leading
contribution to the susceptibility of the square-lattice
Ising antiferromagnet in a weak uniform magnetic field
near the critical temperature Tc � 2J=kB lnac �

2J=kB ln�
���
2

p
� 1�, and H � 0 is given by [16]

# � C1H2 ln�1=jtj� � C2t ln�1=jtj�; (10)

where C1 and C2 are constants and t � �T � Tc�=Tc. The
results obtained by the AF Yang-Lee zeros suggest that
the logarithmic divergence of the susceptibility of the AF
Ising model can occur even in a strong uniform magnetic
field �Hc�a� well below the critical temperature ac. It is
also possible that the value of � � 0 results from the
nonsingular part of the free energy where the hyperscal-
ing relation � � �2yh � d�=yt is not applicable and yh �
1 could be accidental.

The methods presented in this Letter can be applied to
the studies of theYang-Lee zeros and the phase transitions
of the AF Ising model on triangular and hexagonal latti-
ces and of the AF Q-state Potts models with Q � 2.
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