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The Renyi distribution ensuring the maximum of Renyi entropy is investigated for a particular case
of a power-law Hamiltonian. Both Lagrange parameters « and 8 can be eliminated. It is found that 8
does not depend on a Renyi parameter g and can be expressed in terms of an exponent « of the power-
law Hamiltonian and an average energy U. The Renyi entropy for the resulting Renyi distribution
reaches its maximal value at ¢ = 1/(1 + k) that can be considered as the most probable value of g when
we have no additional information on the behavior of the stochastic process. The Renyi distribution for
such g becomes a power-law distribution with the exponent —(x + 1). When g = 1/(1 + k) + € (0 <
€ < 1) there appears a horizontal head part of the Renyi distribution that precedes the power-law part.
Such a picture corresponds to some observed phenomena.
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Numerous examples of power-law distributions (PLDs)
are well known in different fields of science and human
activity [1]. Power laws are considered [2] as one of the
signatures of complex self-organizing systems. They are
sometimes called the Zipf-Pareto law or fractal distribu-
tions. We can mention here the Zipf-Pareto law in lin-
guistics [3], in economy [4], and in the science of sciences
[5], geophysics [6], critical phenomena [7], models of
granulated media [8], the impact fragmentation [9,10],
etc.

Graphically, PLD is presented by a linear graph in a
double logarithmic plot of frequency or cumulative num-
ber as a function of size. It should be noticed here that, in
general, double logarithmic plots of data from phe-
nomena in nature or economy often exhibit a limited
linear regime preceded by a near-horizontal ‘‘head”
part and followed by a tail of significant curvature. The
latter deviation from a power-law description can be
explained by a finite-size effect. In reality, for instance
for the impact fragmentation, extrapolation of the PLD to
infinite fragment masses would predict masses surpassing
a mass of the target. This effect will not be considered
here.

Successful derivations of PLD with the head part are
based on Renyi or Tsallis distributions ensuring maxi-
mums of Renyi or Tsallis entropies correspondingly (see,
e.g., [11,12]). However, the g parameter and Lagrange
multiplier 8 remains undetermined there.

Here, this problem will be discussed on the basis of a
generalization of the maximum entropy principle (MEP)
for the Renyi entropy taking into account a variation of
the g parameter. In the special case that a Hamiltonian of
the system is a power-law function of a variable of the
system the Lagrange multiplier 8 will be expressed in
terms of an average energy of the system and exponent of
the power-law Hamiltonian, and the g parameter will be
determined uniquely.

According to MEP developed by Jaynes [13] for a
Boltzmann-Gibbs statistics an equilibrium distribution
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of probabilities p = {p;} must provide a maximum
of the Boltzmann information entropy Sg(p) =
—kg> ;p;Inp; upon additional conditions of normaliza-
tion >’ ;p; =1 and a fixed average energy U = (H), =
> H;p;. Then, the distribution {p;} is determined from
the extremum of the functional

w w w
Lo(p) == pilap; —ag> pi— Bo > Hipi (1)
g 7 7

where «( and 3, are the Lagrange multipliers. Its extre-
mum is ensured by the Gibbs canonical distribution, in
which S is determined by condition of correspondence
between Gibbs thermostatistics and classical thermody-
namics as By = 1/kgT where T is the thermodynamic
temperature.

On the contrary, in applications of MEP to the Renyi
entropy, the multiplier 8 may depend on ¢ and its physical
meaning is not evident; hence, it is to be determined.

If the Renyi entropy (RE)

k
Se(p) = 7= Y pf @

is used instead of the Boltzmann entropy, the equilibrium
distribution must provide the maximum of the functional

W w W
Lp) = =Y pf —aY pi = B Hipw )

where « and 8 are Lagrange multipliers. It can be noted
that Li(p) passes to Lg(p) in the g — 1 limit.
We equate a functional derivative of Li(p) to zero, then

SLg(p) _ 49 P;rl
8pi 1—q>p]
J

—a— BH,; = 0. )

To eliminate the parameter @ we can multiply this equa-
tion by p; and sum up over i, taking into account the
normalization condition > ;p; = 1. Then we get
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o = q BU (5) where C,, = C/U. Both integrals in these equations may
1—g¢g be calculated with the use of a tabulated [14] integral
and B fm x#ldx 1 fa\w/vTEETA — 2] (13)
_ w _ ~Jo (a+bx")r var (Z) T
g—1 1/(q—1) 0 (a
i = 1 - —AHI q:| , 6
P [( p q >§ Pi © under condition of convergence
where AH; = H; — U. Using once more the condition o<t < A (A>1). (14)
>ipi =1 we get v
® g—1 1/(g—1) For the integrals in Eqgs. (11) and (12) we get
pi=rpi =Zg'(1 - B——AH, )
q 1+« 1
0< <—. (15)
K 1—g¢g

4

Z:t = Z(l - ﬁqT_lAH,.>l/(q”. )

This distribution may be called the Renyi distribution

(RD). When g — 1 the distribution {pER)} becomes the
Gibbs canonical distribution and B/q — By = 1/kgT.
Such behavior is not enough for unique determination
of B.In reality, in general, it may be an arbitrary function
B(q) which becomes B in the limit g — 1.

To find an explicit form of B, we return to the addi-
tional condition of the preassigned average energy U =
>';H;p; and substitute there the RD (7). For definiteness,
we will confine the discussion to the particular case of a
power-law dependence of the Hamiltonian on a parame-
ter x,

H; = Cx~. )

This type of the Hamiltonian corresponds to an ideal gas
model in the Boltzmann-Gibbs thermostatistics and it
seems reasonable to say that it may be useful in construc-
tion of thermostatistics of complex systems. Moreover, in
most social, biological, and humanitarian sciences the
system variable x can be considered (with k = 1) as a
kind of the Hamiltonian (e.g., the size of population of a
country, effort of a word pronouncing and understanding,
bank capital, etc.).

If the distribution {p,} allows for smoothing over the
range much larger an average distance Ax; = x; — x;4,
without sufficient loss of information, we can pass from
the discrete variable x; to the continuous one x. Then the
condition of a fixed average energy becomes

o - /(-1
z—lf Cx"[l—[a’q—(Cx"—U)} ax=U (10)
0 q

or

o 1 1/(g-1)
z-lf C,,x"[l—BUq(Cux"—l)} =1,
0 q

(11

where

- 1 1ig=1)
zzf [I—BUq—(Cux"—l)} ax, (12
0 q
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Then, finally, we find from Egs. (11) and (12) with the use
of the relation I'[1 + z] = zI'[z], that

1
BU =— for all q. (16)
K
Independent of this relation on ¢ means that it is true, in
particular, for the limit case ¢ = 1 where the Gibbs
distribution takes a place and, therefore,

B =By =1/kgT for all q. 17)

When H = p?/2m (that is, k = 2) we get from (16) and
(17) that U = YkpT, as would be expected for one-
dimensional ideal gas.

Additionally, the Lagrange parameter 8 can be elimi-
nated from the RD (7) with the use of Eq. (16) and we
have, alternatively,

-1 1/(g—1)
pR(xlg, k) = Z_l[l - L(Cux" - 1)} ! (18)
Kq

or

—1 1/(g—1)
ﬁmm=r{rﬁ(Qﬁ—ﬂ U (9)
Kq

So, at least for the power-law Hamiltonian, the Lagrange
multiplier 8 does not depend on the Renyi parameter g
and coincides with the Gibbs parameter By = 1/kgT,
and, moreover, can be eliminated completely with the
use of the relation (16).

The problem to be solved for a unique definition of the
RD is the determination of a value of the Renyi parameter
q.

Some successes in this direction were achieved for
particular cases of a set of independent harmonic oscil-
lators [15,16] and fractal systems [17].

An excellent example of the solution of this problem
for a physical non-Gibbsian system was presented by
Wilk and Wlodarczyk [18]. They took into consideration
fluctuations of both energy and temperature in contrast to
the traditional Gibbs method in which temperature is a
constant. As a result, their approach led (see [19]) to the
RD with the parameter g expressed via heat capacity Cy
of the minor subsystem ¢ = (Cy, — kz)/Cy. The approach
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by Wilk and Wlodarczyk was advanced by Beck [20] and
Beck and Cohen [21] who offered for it a new apt term
“superstatistics.” In the frame of superstatistics, the pa-
rameter ¢ is defined by physical properties of a system.

On the other hand, there are many stochastic systems
for which we have no information related to a source of
fluctuations. In that case the parameter ¢ cannot be de-
termined with the use of the superstatistics.

Here, a further extension of MEP is proposed. It con-
sists of looking for a maximum of the RE in a space of
the RDs with different values of g.

The next step consists of substitution of the RD
pR(xlg, k) into the definition of the RE, Eq. (2), and
variation of the g parameter. The resultant picture of
Sglp®(xlg, k)] as a function of ¢ is illustrated in Fig. 1
(top). It is seen that Sg[ p®(x|q, )] attains its maximum at
the minimal possible value of ¢ which fulfills the inequal-
ity (15), that is,

1
Imin = T3 - (20)

For g < guin, the integral (10) diverges and, therefore, the
RD does not determine the average value U = (H),, that
is a violation of the second condition of MEP [22].

To check self-consistency of the proposed extension
of MEP the similar procedure is applied to the
Boltzmann-Shannon entropy Sz(p). Substituting there
p = pR(xlg, k) we get the g-dependent function
SglpR(xlg, k)] illustrated in Fig. 1 (bottom). As would
be expected, the Boltzmann-Shannon entropy
SglpR(xlg, k)] attains its maximum value at ¢ = 1 where
pR(x|g, k) becomes the Gibbs canonical distribution.

Thus, it is found that the maximum of the RE is
realized at ¢ = q,;, and it is just the value of the Renyi
parameter that should be used for the discussed particular
case of the power-law Hamiltonian if we have no addi-
tional information on behavior of the stochastic process
under consideration.

Substitution of g = g, into Eq. (18) leads to

p~ x~(kHD, (1)

Thus, for ¢ = g, the RD for a system with the power-
law Hamiltonian becomes a PLD over the whole range of
X.

For a particular case of the impact fragmentation where
H ~ m*? the power-law distribution of fragments over
their masses m follows from (21) as p(m) ~ m/? that
coincides with results of our previous analysis [10] and
experimental observations [9].

For another particular case, k = 1, PLD is p ~ x 2.
Such a form of the Zipf-Pareto law is the most useful in
social, biological, and humanitarian sciences. The same
exponent of PLD was demonstrated [24] for energy spec-
tra of particles from atmospheric cascades in cosmic ray
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FIG. 1. The SrLpR(xlg, )1/kg

entropies
SglpR(xlg, k)1/kp (bottom) for the power-law Hamiltonian
with the exponent x within the range 3> «>0.5 and ¢ >
1/(1 + k).

(top) and

physics and for distribution of users among the web sites
[25].

It is necessary to notice here that inequalities (15)
suggest in fact ¢ > g, that is, ¢ = gnin + €, wWhere €
is a positive infinitesimal value. It is clear that € (< 1)
should be a finite constant at physical realizations. Taking
into account the finite e gives rise to the RD in the form

pR(x) _ Z_1(Cl,x)_(K+1){1+E[(K+1)/K]}[1 — e(k + 1)2(1
— € x®)] e D/ kK el /], (22)

For sufficiently great x’s this RD passes to PLD where all
terms with € can be neglected.

On the other hand, for sufficiently small x, only the
term e(k + 1)°C,x * may be accounted for in the ex-
pression in the square brackets, so we get

PRt ~ (el + 1)2). 7 D/x (23)

This equation points to the fact that the asymptote to the
RD for small x’s is a constant.

The picture of the RD over the whole range of x is
illustrated in Fig. 2.

Now there is no method for a unique theoretical deter-
mination of €, so it may be considered as a free parameter.
It can be estimated for those experimental data where the
head part preceding PLD is presented. As an example, for
the probability distribution of connections in World Wide
Web network [26] where € is estimated as ~107%.

In summary, the maximum entropy principle applied
to the RE gives rise to a RD that depends on the Renyi
parameter g and two Lagrange multipliers & and 8. The
multiplier @ corresponds to the condition of normaliza-
tion of the distribution and may be eliminated with ease.
The second Lagrange multiplier 8 corresponds to the
condition of a fixed average energy U = (H), just as
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FIG. 2. Log-log graph of the RDs p®(x) (non-normalized) for
the power-law Hamiltonian H ~ x* («k = 1) and different val-
ues € = 107%, 1073, 10~* from top to bottom.

Bo = 1/kgT in the Gibbs distribution function. The con-
nection of B, with the thermodynamic temperature ob-
viates the necessity to eliminate the second Lagrange
multiplier from the Gibbs distribution. It is not so for 3,
at least until the new Renyi thermostatistics is constructed
and B obtains a physical meaning.

It is shown here that for the particular case of a power-
law Hamiltonian H; = Cx* the Lagrange multiplier B
does not depend on the Renyi parameter ¢ and coincides
with By. Moreover, it can be expressed in terms of U and
x and thus eliminated completely from the RD function.

In the absence of any additional information on a
nature of the stochastic process, the ¢ parameter can be
determined with the further use of MEP in the space of
the g-dependent RDs. Maximum of the RE is found at
g = 1/(1 + k). The RD for such g becomes a power-law
distribution with the exponent —(1 + k) that agrees with
observable data for stochastic systems.

When applying such MEP to the Boltzmann entropy
for the g-dependent RD, Sg[pR(x|g, k)], the maximum is
found at ¢ = 1 that corresponds to the Gibbs distribution,
as would be expected.

It should be noted that all above estimations of the
parameters of the RD (7) and the exponent of PLD are
true as well for the escort version of the Tsallis” distribu-
tion [11]

P = 7711 - B*(1 — ¢)AH)I/0-9)  (24)

because of both distributions are identical if ¢’ = 1/q. In
reality, in this case

!

| —g=9" 1 9  _

q  1-q gq-T

and B* is determined by the same second additional
condition of MEP as well as (3.

It may be supposed that the parametric generalization
of MEP proposed here will be useful for other parametric
entropies (see, e.g., [27,28]).

I acknowledge fruitful discussions of the subject with
A. Vityazev and S. Abe.
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