
VOLUME 93, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S week ending
24 SEPTEMBER 2004
Quantum Circuits for General Multiqubit Gates
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We consider a generic elementary gate sequence which is needed to implement a general quantum
gate acting on n qubits—a unitary transformation with 4n degrees of freedom. For synthesizing the gate
sequence, a method based on the so-called cosine-sine matrix decomposition is presented. The result is
optimal in the number of elementary one-qubit gates, 4n, and scales more favorably than the previously
reported decompositions requiring 4n � 2n�1 controlled NOT gates.
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The foundation of quantum computation [1] involves
the encoding of computational tasks into the temporal
evolution of a quantum system. Thereby a register of
n qubits, identical two-state quantum systems, is em-
ployed. Quantum algorithms can be described by unitary
transformations and projective measurements acting on
the 2n-dimensional state vector of the register. In this
context, unitary transformations are also called quantum
gates. The recently discovered quantum algorithms [2–4]
embody arbitrary unitary transformations and hence call
for techniques to efficiently implement a general n-qubit
gate. The complexity of an implementation is measured in
terms of the number of elementary gates required [5].
Achieving gate arrays of lower complexity is crucial not
only because it generally results in shorter execution
times, but it may also introduce fewer errors.

Any finite-dimensional unitary transformation can be
represented as a unitary matrix, and hence any n-qubit
gate corresponds to a certain 2n � 2n unitary matrix, U.
Therefore, the powerful methods of matrix computation
[6] can be utilized to produce quantum gate decomposi-
tions. However, only decompositions yielding matrices
that correspond to gate sequences of low complexity are
interesting. We choose the library of elementary gates to
consist of the controlled NOT (CNOT) gate, the one-qubit
rotations about the y and z axes, and a phase gate adjust-
ing the unobservable global phase. Since the cost of
physically realizing a CNOT gate may exceed that of a
one-qubit gate, we count the numbers of these gates
separately.

A general unitary 2n � 2n matrix U has 4n real degrees
of freedom. Since each elementary one-qubit gate carries
1 degree of freedom, at least 4n such gates are needed to
implement U. The current theoretical lower bound for the
number of CNOT gates needed in realizing an arbitrary
n-qubit gate, d14 �4

n � 3n� 1�e, is given in Ref. [7]. How-
ever, no circuit construction yielding these numbers of
CNOT or elementary one-qubit gates has been presented in
the literature. The conventional approach [5] to imple-
menting general multiqubit gates makes use of the QR
decomposition [6] for unitary matrices, yielding an array
0031-9007=04=93(13)=130502(4)$22.50 
of O�n34n� elementary gates. Heretofore, the most effi-
cient implementation based on the QR decomposition, for
asymptotically large n, requires approximately 8:7� 4n

CNOT gates [8]. In addition, the synthesis of optimal
quantum circuits for certain special classes of gates has
been intensively studied. The implementation of a general
two-qubit gate [7,9–11] is found to require three CNOTs
and 16 elementary one-qubit gates. For a three-qubit gate,
the current minimal implementation using 40 CNOTs and
98 elementary one-qubit gates [12] is based on the
Khaneja-Glaser decomposition (KGD) [13]. Further-
more, an implementation of an arbitrary diagonal unitary
matrix involving 2n � 2 CNOTs and 2n elementary one-
qubit gates is known [14].

In this Letter, we present an efficient implementation of
a general unitary transformation U by recursively utiliz-
ing the cosine-sine decomposition (CSD) [15]. In the
context of quantum computation, the CSD has first been
considered in Ref. [16], and its relation to the KGD has
recently been discussed in [17]. We decompose U into a
product of matrices, each of which is identified with a new
type of gate that we call a uniformly controlled rotation.
To implement these gates, we present an efficient elemen-
tary gate sequence which is related to the gates recently
explored in Ref. [14] as a part of the implementation of a
diagonal quantum computer.

Let Fk
m�Ra� denote a uniformly controlled rotation. It

consists of k-fold controlled rotations of qubit m about the
three-dimensional vector a, one rotation for each of the 2k

different classical values of the control qubits. The index
m may acquire the values 1; 2; . . . ; n and k the values
1; 2; . . . ; n� 1. An example of Fk

m�Ra�, where m � 4
and k � 3, is shown in Fig. 1. The relative order of the
controlled rotations is irrelevant; the gates commute. For
instance, the uniformly controlled rotation Fk

k�1�Ra� has
the matrix representation

Fk
k�1�Ra� �

Ra��1�

. .
.

Ra��2k�

0BB@
1CCA; (1)

where the angles �1; �2; . . . ; �2k may be freely chosen and
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FIG. 1. Definition of the uniformly controlled rotation
F3
4�Ra�. Here a is a three-dimensional vector fixing the rotation

axis of the matrices Rj
a � Ra��j�.
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the rotation matrix Ra��� is given by

Ra��� � eia	��=2 � I cos
�
2
� i�a 	 �� sin

�
2
: (2)

Above I is the unit matrix, and the product a 	 � �

ax�x � ay�y � az�z involves the Pauli matrices �x, �y,
and �z [1]. In general, Fk

m�Ra� is a product of 2k two-level
matrices.

We propose an implementation of Fk
m�Ra� with ax � 0

using an alternating sequence of 2k CNOTs and 2k one-
qubit rotations Ra��i� acting on the qubit m. The position
of the control node in the lth CNOT gate is set to match the
position where the lth and �l� 1�th bit strings gl�1 and gl
of the binary reflected Gray code [18] differ. In binary
Gray codes, the adjacent bit strings differ by definition
only in a single bit, and hence the position is well defined.
As an example, the quantum circuit for the gate F3

4�Ra� is
shown in Fig. 2(a) while Fig. 2(b) illustrates the corre-
spondence of the Gray code to the positions of the control
nodes in the CNOT gates.

In the proposed construction, each of the control qubits
regulates an even number of NOT gates, since in a cyclic
Gray code each bit is flipped an even number of times. On
the other hand, Eq. (2) yields

ax � 0 ) �xRa����x � Ra����: (3)

Hence, for any of the standard basis vectors acting as an
FIG. 2. (a) Quantum circuit realizing the gate F3
4�Ra�, where

a is perpendicular to the x axis. Here we have used a notation
~Rj
a � Ra��j�. (b) Binary reflected 3-bit Gray code used to

define the positions of the control nodes. The black and white
rectangles denote bit values one and zero, respectively.
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input all the induced NOT gates annihilate each other and
negate some of the angles f�ig. Furthermore, subsequent
rotations about any single axis a are additive, i.e.,
Ra���Ra�!� � Ra���!� for arbitrary angles � and
!. Thus, the construction yields a rotation of the qubit
m about the axis a through an angle which is a linear
combination of the angles f�ig. Consequently, the pro-
posed quantum circuit is equivalent to the gate Fk

m�Ra�
provided that the angles f�ig are a solution of the linear
system of equations

Mk

�1

..

.

�2k

0BB@
1CCA �

�1

..

.

�2k

0BB@
1CCA; (4)

where the matrix elements Mk
ij can be determined using

Eq. (3). The rotation angle �j is negated, provided that the
control nodes attached to the lth qubit are active and the
lth bit of gj�1 has the value one. The negations must be
applied for each control qubit independently, which re-
sults in

Mk
ij � ��1�bi�1	gj�1 ; (5)

where bi is the standard binary code representation of the
integer i and the dot in the exponent denotes the bitwise
inner product of the binary vectors.

The matrix Mk bears a strong resemblance to the k-bit
Walsh-Hadamard matrix Hk

ij � 2�k=2��1�bi�1	bj�1 , which
is by construction orthogonal. Since a Gray code is a
permutation of the standard binary code, 2�k=2Mk is a
column-permuted version of Hk and thus also orthogonal.
Consequently, we obtain the inverse matrix �Mk��1 �
2�k�Mk�T , and the determination of f�ig for any desired
angles f�ig is immediate. Thus any uniformly controlled
rotation Fk

m�Ra� with ax � 0 and k  1 can be realized
using 2k CNOT gates and 2k one-qubit rotations Ra��i�. We
note that although we chose to use the binary reflected
Gray code to determine the positions of the control nodes
in the CNOT gates, any cyclic k-bit binary Gray code will
also qualify. Furthermore, Fk

m�Ra� can also be achieved
by a horizontally mirrored version of the quantum circuit
presented.

The CSD of a unitary 2n � 2n matrix may be expressed
as [15]

U �
u1
11 0
0 u1

12

� �
|







{z







}

U1
1

c111 s111
�s111 c111

� �
|








{z








}

A1
1

u1
21 0
0 u1

22

� �
|







{z







}

~U1
2

; (6)

where the exact form of the submatrices is given below.
The decomposition may be applied recursively to the
submatrices of Ui

j, until a 2� 2 block-diagonal form is
encountered. In our indexing scheme, the upper index
denotes the level of recursion, whereas the lower index
denotes the position of the matrix within the resulting
130502-2



FIG. 3 (color online). Quantum circuit for a three-qubit gate
obtained using the cosine-sine decomposition. The sequences
of gates Bj correspond to the 2� 2-block-diagonal matrices
and the gates Ai

j to the cosine-sine matrices. The leftmost gate
sequence corresponds to the diagonal quantum computer of
Ref. [14].

VOLUME 93, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S week ending
24 SEPTEMBER 2004
matrix product. We note that CSD is not unique, and one
should take the possible internal symmetries of the ma-
trix U into account to obtain the simplest achievable form
for the matrices Ui

j.
In the decomposition, ui

jk (k � 1; . . . ; 2i) are unitary
2n�i � 2n�i matrices and the real diagonal matrices cijk
and sijk (k � 1; . . . ; 2i�1) are of the form cijk �
diagl�cos�l� and sijk � diagl�sin�l� (l � 1; . . . ; 2n�i). For
a general i � 1; . . . ; n� 1, the matrices Ui

j and Ai
j assume

the forms

Ui
j � diagk�u

i
jk�; �k � 1; . . . ; 2i�; (7)

and

Ai
j � diagk

"
cijk sijk
�sijk cijk

 !#
; �k � 1; . . . ; 2i�1�; (8)

where Eq. (7) applies also for ~Ui
j. For the ith level of the

recursion we obtain

Ui�1
j � Ui

2j�1A
i
"�i;j�

~Ui
2j; (9)

where the indexing function "�i; j� � 2n�i�1�2j� 1� has
been introduced to make the result of the recursion more
feasible. The matrix A1

1 is also referred to as A1
"�1;1�. As

compared with the original matrix Ui�1
j , the above de-

composition contains 2n�1 additional degrees of freedom.
To specify them explicitly, we define unitary diagonal
matrices

Pi
j � diagk�p

i
j;dk=2e�; (10)

where j; k � 1; . . . ; 2i and the diagonal matrix pi
jk �

diagl�e
i�l�, where l � 1; . . . ; 2n�i. The angles f�lg may

be chosen arbitrarily for each pi
jk and, as shown below,

we can use them to reduce the total number of gates
needed in the final decomposition. We insert I �
Pi

"�i;j��P
i
"�i;j��

y into Eq. (9), next to Ai
"�i;j� with which

Pi
"�i;j� commutes, and obtain

Ui�1
j � Ui

2j�1P
i
"�i;j�A

i
"�i;j�U

i
2j; (11)

where the matrix �Pi
"�i;j��

y is absorbed into the definition
of Ui

2j � �Pi
"�i;j��

y ~Ui
2j, and Pi

"�i;j� is kept intact.
Finally, the decomposition leads to the result

U �

0@ Y2n�1�1

j�1

Un�1
j P%�j�

j|





{z





}
Bj

A%�j�
j

1AUn�1
2n�1|
{z
}

B
2n�1

; (12)

where the function %�j� � 1 indicates the position of the
least significant nonzero bit in the n-bit binary presenta-
tion of the number j. The matrices P%�j�

j are determined
by the preceding matrix Un�1

j . This fixes the order in
which the recursion must be applied, since the absorbed
130502-3
matrices �P%�j�
j �y affect consequent decompositions.

Thus, the recursion in Eq. (11) is first applied to the
matrix Ui

j with the largest upper index and, upper indices
being equal, the smallest lower index subject to the stop-
ping criterion i � n� 1.

We find that each of the matrices Ai
j in Eq. (12) corre-

sponds to a gate Fn�1
i �Ry�. Furthermore, the 2� 2 block-

diagonal matrices Bj may, with a suitable choice of P%�j�
j ,

be expressed as

Bj � Fn�1
n �Rz�Fn�1

n �Ry�Fn�1
%�j� �Rz�; (13)

and combined with the subsequent A%�j�
j into a BA section:

�BA�j � Fn�1
n �Rz�F

n�1
n �Ry�F

n�1
%�j� �Rz�F

n�1
%�j� �Ry�: (14)

The final matrix B2n�1 , for which we have no extra degrees
of freedom left, must be implemented as

B2n�1 � Fn�1
n �Rz�F

n�1
n �Ry�

� Fn�1
n �Rz�Fn�2

n�1�Rz� 	 	 	F
0
1�Rz��; (15)

where � is an elementary phase gate which serves to fix
the unobservable global phase. To illustrate the method,
the complete decomposition of a general three-qubit gate
is shown in Fig. 3.

Each of the BA sections consists of two uniformly
controlled z rotations and two uniformly controlled y
rotations. By mirroring the circuits of the y rotations,
we may cancel four CNOT gates in each section. Hence the
cost of each of the 2n�1 � 1 sections is 2n�1 elementary
one-qubit rotations and 2n�1 � 4 CNOTs. The final B ma-
trix decomposes into uniformly controlled z and y rota-
tions followed by a cascade of uniformly controlled z
rotations which fixes the phases. This cascade corre-
sponds to the diagonal quantum computer of Ref. [14].
Applying the mirroring trick, two more CNOT gates are
cancelled between the z and y rotations. The cost of the
last B section is 2n�1 elementary one-qubit gates and
2n�1 � 4 CNOTs. Finally, we arrive at the total complexity
of the decomposition: 4n � 2n�1 CNOT gates and 4n ele-
mentary one-qubit gates.

In conclusion, the proposed decomposition of a general
multiqubit gate, based on the CSD and uniformly con-
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trolled rotations, provides a quantum circuit that contains
the minimal number of elementary one-qubit gates and
on the order of 4 times the minimal number of CNOT gates.
Compared with the minimal decomposition of a two-
qubit gate [7,9–11] the CSD method requires five extra
CNOT gates. For a three-qubit gate the CSD requires 48
CNOT gates and 64 elementary one-qubit gates, as op-
posed to the circuit of 40 CNOTs and 98 elementary one-
qubit gates obtained using the KGD in Ref. [12]. For four-
qubit gates the CSD provides a quantum circuit of 256
elementary one-qubit gates and 224 CNOTs, which is the
shortest elementary gate array known to implement such
a gate. Thus, for a general n-qubit gate, where n  4, the
method presented provides the most efficient quantum
circuit known to implement the gate.

To further improve the implementation of a particular
quantum gate one may optimize the synthesized quantum
circuit. The possible methods for optimization include
finding the most efficient CSD factorizations, varying
the Gray codes, mirroring the gate arrays of the uni-
formly controlled rotations and possibly combining the
uniformly controlled y and z rotations into general uni-
formly controlled gates. Certain quantum gates that are
likely to be useful in quantum computation comprise
internal symmetries and can thus be implemented using
only a polynomial number of elementary gates. For ex-
ample, O�n2� gates are needed to implement a quantum
Fourier transformation of n qubits [1]. Although the
method presented apparently requires O�4n� elementary
gates, it is still possible that, using proper optimizations,
the gate array will appreciably simplify and the result
will resemble that of the polynomial decompositions.
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