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Parametric Driving of Dark Solitons in Atomic Bose-Einstein Condensates

N. P. Proukakis, N. G. Parker, C. F. Barenghi, and and C. S. Adams
Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom

School of Mathematics and Statistics, University of Newcastle, Newcastle upon Tyne, NE1 7RU, United Kingdom
(Received 22 March 2004; published 23 September 2004)
130408-1
A dark soliton oscillating in an elongated harmonically confined atomic Bose-Einstein condensate
continuously exchanges energy with the sound field. Periodic optical paddles are employed to
controllably enhance the sound density and transfer energy to the soliton, analogous to parametric
driving. In the absence of damping, the amplitude of the soliton oscillations can be dramatically
reduced, whereas with damping, a driven soliton equilibrates as a stable soliton with lower energy,
thereby extending the soliton lifetime up to the lifetime of the condensate.
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FIG. 1 (color online). Schematic of parametric driving:
(a) Total axial potential (gray lines, left axis) and density
(black lines, right axis) of perturbed harmonic trap with
propagating dark soliton (solid lines), at 2 times (left/right
plots) corresponding to maximum drive amplitudes.
(b) Corresponding drive potentials (solid gray, �> 0).
Dashed lines denote density/potential in the unperturbed har-
monic trap.
Dark solitons [1] are an important manifestation of the
intrinsic nonlinearity of a system and arise in diverse
systems such as optical fibers [2], waveguides [3], surfaces
of shallow liquids [4], magnetic films [5], and atomic
Bose-Einstein Condensates (BECs) [6]. Dark solitons
are dynamically unstable in higher than one-dimensional
(1D) manifolds (e.g., snake instability in 3D leading to
decay into vortex rings [7–9]). Solitons in 1D geometries
experience other instabilities [10], whose nature depends
on the system: For example, dark solitons in optical
media are prone to nonlinearity-induced changes in the
refractive index [1], whereas in harmonically trapped
atomic BECs they experience dynamical instabilities
due to the longitudinal confinement [9,11–15], as well
as thermodynamic [16] and quantum [17] effects.
Instabilities lead to dissipation via the emission of radia-
tion. Compensation against dissipative losses by para-
metric driving has been demonstrated in some of the
above media [4,18]. The aim of this Letter is to discuss
this effect in the context of atomic BECs.

In atomic gases, the snake instability [8] can be sup-
pressed in elongated, quasi-1D geometries [19], with
thermal instabilities minimized at temperatures T � Tc
(where Tc is the BEC transition temperature). In this
limit, a dark soliton oscillating in a harmonically-
confined BEC continuously emits radiation (in the form
of sound waves) due to the inhomogeneous background
density [11]. The sound remains confined and reinteracts
with the soliton, leading to periodic oscillations of the
soliton energy [14]. In this Letter, we propose the con-
trolled amplification of the sound field at a particular
frequency, and illustrate the resulting transfer of energy
into the soliton, in close analogy to established para-
metric driving techniques [4]. Energy is pumped into
the sound field via periodically modulated ‘‘paddles’’,
located towards the condensate edge (Fig. 1). If the drive
frequency is nearly resonant with the soliton oscillation
frequency, one observes significant energy transfer to the
soliton. In the absence of dissipation, this leads to a
dramatic reduction in the amplitude of the soliton oscil-
0031-9007=04=93(13)=130408(4)$22.50
lations. Under dissipative conditions, the damped soliton
equilibrates as a stable soliton with lower energy, with
its lifetime extended up to the condensate lifetime.
Moreover, suitable engineering of the phase of the driving
field (relative to the soliton oscillations) can maintain the
soliton energy at its initial value for times significantly
longer than the undriven soliton lifetime.

Our analysis is based on the cylindrically-symmetric
3D Gross-Pitaevskii Equation (GPE) describing the evo-
lution of the macroscopic order parameter  ��; z� of an
elongated 3D atomic BEC

i �h
@ 
@t

� �
�h2

2m
r2 � V � gj j2 �� ; (1)

where m is the atomic mass, V � VT�r� � VD�r�, VT�r� �
�m=2��!2

zz2 �!2
?�

2� is the harmonic confining potential
of longitudinal (transverse) frequency !z (!?), where
!z � !?, and VD�r� is the drive potential (Eq. (3)). The
nonlinearity arises from effectively repulsive atomic in-
teractions yielding a scattering amplitude g � 4� �h2a=m,
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FIG. 2 (color online). (a) ‘On-axis’’ quasi-1D soliton energy
for (i) undriven case, (ii) continuous driving and (iii) driving
switched off at t0 � 80!�1

z , based on simulations of the 3D
cylindrically-symmetric GPE (black lines) and 1D GPE (gray
lines) for a soliton with initial speed v0 � 0:75c.
(b) Longitudinal soliton oscillations with continuous driving
(gray line), and driving switched off at t0 (vertical gray line)
under the 3D GPE. Dashed lines indicate the initial amplitude.
The trap strength is determined from the chemical potential:
Quasi-1D: �3D � 8 �h �! with �! � �!z!2

?�
1=3 and !?=!z �

250. Pure 1D: �1D � 70 �h!z for which the 1D density matches
the quasi-1D longitudinal density. Drive parameters: !D �

0:98!sol, � � 0:1�1D, w0 � 3:2lz, z0 � 10:7lz with lz ��������������������
�h=�m!z�

p
the longitudinal harmonic oscillator length.
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where a > 0 is the s-wave scattering length. The chemical
potential is given by � � gn0, where n0 is the peak
atomic density.

Dark soliton solutions are supported by the 1D form of
Eq. (1) in the absence of external confinement (V � 0). On
a uniform background density n, a dark soliton with speed
v and position �z� vt� has the form,

 �z; t� �
���
n

p
e�i��= �h�t

�
� tanh

�
�
�z� vt�

�

�
� i

�
v
c

��
(2)

where � �
�����������������������
1� �v=c�2

p
, and the healing length � �

�h=
��������
�m

p
characterizes the soliton width. The soliton speed

v=c �
�����������������������
1� �nd=n�

p
� cos�S=2� depends on the total

phase slip S across the center and the soliton depth nd
(with respect to the background density), with the limit-
ing value set by the Bogoliubov speed of sound c ������������
�=m

p
. The energy of the unperturbed dark soliton,

Eq. (2), is given by E0
s � �4=3� �hcn�1� �v=c�2�3=2. The

drive potential

VD � � sin�!Dt�
�
e��z�z0�2=w2

0 � e��z�z0�2=w2
0

�
(3)

consists of two periodically-modulated Gaussian paddles,
with amplitude �, at positions z0, oscillating in anti-
phase at a fixed frequency !D, close to the soliton fre-
quency (Fig. 1). Such a set up could be created by time-
dependent red and blue detuned laser beams with beam
waist w0.

In our Letter, the dark soliton is defined as the density
deviation from the unperturbed density (in the absence of
the soliton) within the ‘‘soliton region’’ R: �zs � 5�; zs �
5��, where zs the instantaneous position of the local
density minimum. This ‘‘perturbed’’ soliton includes
sound excitations located within the soliton region.
The motion and stability of a quasi-1D dark soliton is
well parametrized by its energy. In order to compare the
quasi-1D soliton energy to the analytical homogeneous
1D energy, the soliton dynamics are parametrized
in terms of the ‘‘on-axis’’ (� � 0) soliton energy
Es �

R
Rf"� �0; z�� � "� bg�0; z��gdz, where "� � � �h2=

�2m�jr j2 � Vj j2 � �g=2�j j4 and "� bg�0; z�� is the
corresponding background fluid contribution [14,15,20].

Dissipationless Regime:— Consider first the case of no
dissipation. In the absence of VD, the soliton oscillates at
!sol � !z=

���
2

p
[9,11–16], emitting sound waves which

oscillate at the trap frequency !z. This frequency mis-
match means that the soliton propagates through a
periodically-modulated background density, leading to
a weak periodic modulation of the soliton energy
[Fig. 2(a), curves (i)). The amplitude of this modulation
is enhanced by the coupling between longitudinal and
transverse degrees of freedom [12,14].

To demonstrate substantial energy transfer into the
soliton, we start with a low energy shallow soliton (speed
130408-2
v0 � 0:75c at z � 0). Applying the drive potential indu-
ces an additional, more pronounced, periodic background
density modulation and a time dependence in the soliton
oscillation frequency, which is found to vary less than
10% from its unperturbed value !sol. As a result, the
relative phase between the drive and the soliton oscilla-
tions, which determines the direction of energy flow
between soliton and sound, becomes time dependent.
Beginning with the drive out-of-phase with the soliton
oscillations, the soliton initially acquires energy, up to
time t0, after which it begins to lose energy, and the cycle
repeats [curves (ii) in Fig. 2(a)]. There is good agreement
between the 3D ‘‘on-axis’’ energy (black lines) and the
corresponding energy of the pure 1D simulations (gray
lines) (3D results feature an additional small amplitude
oscillation due to longitudinal-transverse coupling). The
corresponding beating in the soliton oscillation amplitude
is shown in Fig. 2(b) (gray line). This beating effect can
be visualized as the periodic cycling between the initial
low energy dark soliton, and the nearly stationary high
energy soliton, somewhat analogous to the cycling of a
driven condensate between the ‘‘no-vortex’’ and ‘‘single-
vortex’’ configurations [21]. A soliton of higher energy
can be created by removing the drive potential after a
certain pumping time [Fig. 2(a), curves (iii)]. A nearly
stationary soliton (black line in Fig. 2(b)), can be created
130408-2
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by stopping the drive when the soliton has acquired its
maximum energy.

The soliton dynamics depend sensitively on the pa-
rameters of the driving field. Firstly, the pumping should
take place outside of the range of the soliton oscillations
(i.e., z0 > 9lz for v0 � 0:75c). Otherwise, the soliton
traverses the Gaussian bumps, leading to ‘‘dephasing’’
of emitted sound waves and subsequent soliton decay
[15]. The transfer of energy between the soliton and the
sound field depends on the phase of the drive relative to
the soliton oscillations, and hence on the drive potential
seen by the soliton at the extrema of its oscillatory mo-
tion. This parameter depends on the drive frequency !D,
the amplitude of the potential modulation �, the range of
the potential w0, its location z0, and the initial soliton
speed v0. For given a choice of �, w0, z0, and v0, there is a
resonance in the sound energy absorbed as a function of
the drive frequency !D as illustrated by the open circles
in Fig. 3. The maximum pumping does not arise precisely
at !sol, due to the additional frequency modification
induced by the perturbing potential. Importantly, the
width of the resonance for which the transferred soliton
energy reaches half its maximum value (FWHM), is
reasonably broad ( � 10%!sol). Alternative schemes for
pumping energy into the soliton (e.g. via one off- center
paddle, or with �< 0), lead to a delayed and less efficient
energy transfer, while periodically displacing the trap
causes no net increase in the soliton energy.

Dissipative Regime:— In a realistic quasi-1D system,
both condensate and soliton are prone to damping, e.g.,
due to a small thermal cloud [16]. To estimate the effect of
dissipation, we introduce a phenomenological damping
term �h$@ =@t on the left-hand side of Eq. (1) [22]. In the
absence of driving, this term leads to an approximately
exponential decay of the soliton energy, modified by the
oscillatory motion of the soliton (dashed line in Fig. 4(a)).
Dissipation also damps the sound field, leading to a
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FIG. 3 (color online). Optimized ratio of maximum pumped
energy Emax

s to initial soliton energy E0
s for a v0 � 0:75c soliton

as a function of drive frequency for (i) no damping (black
circles), or (ii) with damping $ � 5� 10�4 (gray squares).
This value of $ leads to the same soliton lifetime as for the
undriven 0:3c soliton in Fig. 4. Results based on pure 1D GPE
for the case of Fig. 2.
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narrowing and a shift (towards !sol) of the resonance in
the drive frequency (gray data in Fig. 3).

Stabilization Against Decay:— For a high energy soli-
ton, continuous parametric driving counterbalances
damping initially (solid line in Fig. 4(a) up to !zt�
90), but subsequently the soliton starts to decay (90<
!zt < 170), thereby changing both the amplitude and the
phase of the soliton oscillations [11,14]. The evolution in
the relative phase between the drive and the soliton os-
cillations eventually enables the soliton to gain energy
again. After a few gain-loss cycles, the initially deep
(v0 � 0:3c) soliton of energy Es � 80 �h!z equilibrates
as a shallower soliton of energy Es � 35 �h!z (correspond-
ing to v0 � 0:7c).

Stabilization at Fixed Energy:— Some applications
may require a soliton maintained at fixed energy. For
this, one must balance the competing effects of driving
and dissipation. This can be achieved by rephasing the
drive relative to the soliton oscillations at appropriate
times, as demonstrated by the solid line in Fig. 4(b) for
a sequence of four rephasing operations. In principle, such
stabilization can be extended to the duration of the con-
densate lifetime. In an experiment, one actually measures
the position of the soliton (rather than its energy) [6].
Hence, rephasing could be performed by monitoring the
amplitude of the soliton oscillations and adjusting the
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FIG. 4 (color online). (a) Soliton energy (v0 � 0:3c) for a
dissipative system ($ � 10�3) in the presence (solid line) or
absence (dashed) of continuous driving (!D � !sol, z0 �
7:1lz). The driven soliton stabilizes at Es � 35 �h!z.
(b) Energy of a v0 � 0:3c soliton with parametric driving
(solid black), undergoing rephasing during the periods between
adjacent dashed gray lines. Dashed black line as in (a).
(c) Driven (solid line) and undriven (dashed line) soliton
trajectories for case (b). In (b), (c), horizontal gray lines
indicate the initial soliton energy and oscillation amplitude.
Results based on the 1D GPE, with other parameters as in
Fig. 2.
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drive phase, so that the soliton oscillation amplitude
remains constant. Figure 4(c) shows the oscillation am-
plitude of the parametrically driven soliton (solid black
line), which is very similar to the undamped undriven
case, and is clearly distinct from the undriven dissipative
motion (dashed black line), whose amplitude increases
until the soliton decays at !zt � 105.

Finally, we discuss the relevance of the proposed
scheme to current experiments with atomic BECs.
Given a longitudinal confinement !z � 2�� 10 Hz,
the presented results correspond to !? � 2��
2500 Hz, a linear ‘‘on-axis’’ density n � 5� 107�1:5�
107�m�1 of 23Na (87Rb), and harmonic oscillator time
!�1
z � 15 ms. In Fig. 4 ($ � 10�3), this corresponds to

a soliton lifetime of �1s, consistent with the theoretical
predictions for solitons in quasi-1D geometries [9,11,16].
The paddle beams have a waist w0 � 20�m and maxi-
mum amplitude � � 7 �h!z located around z0 � 7lz. The
results presented here also hold for smaller aspect ratios
(e.g.,!?=!z � 50). Since, for a given aspect ratio, higher
frequencies correspond to faster timescales, the tech-
nique presented here is not sensitive to the particular
soliton lifetime. Increasing $ beyond an upper limit
(i.e., large dissipation), renders it practically impossible
to increase or stabilize the soliton energy.

We have shown that, in the case of a dark soliton
oscillating in a harmonically trapped Bose-Einstein con-
densate, the addition of two out-of-phase Gaussian po-
tentials, with amplitude modulated periodically at a fixed
frequency close to the soliton frequency, pumps energy
into the soliton. This parametric driving technique can
stabilize the soliton against decay for timescales compa-
rable to the condensate lifetime. Optimization of the
phase of the drive can further force the soliton to main-
tain its initial energy for at least a few times its natural
lifetime. Both effects should be observable in current
experiments.

We acknowledge discussions with D. J. Frantzeskakis
and P. G Kevrekidis and the UK EPSRC for funding.
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