
VOLUME 93, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S week ending
24 SEPTEMBER 2004
Dual Kinetic Balance Approach to Basis-Set Expansions for the Dirac Equation

V. M. Shabaev,1,2 I. I. Tupitsyn,1 V. A. Yerokhin,1,2 G. Plunien,2 and G. Soff2

1Department of Physics, St. Petersburg State University, Oulianovskaya 1, Petrodvorets, St. Petersburg 198504, Russia
2Institut für Theoretische Physik, TU Dresden, Mommsenstrasse 13, D-01062 Dresden, Germany

(Received 22 August 2003; published 22 September 2004)
130405-1
A new approach to finite basis sets for the Dirac equation is developed. It does not involve spurious
states and improves the convergence properties of basis-set calculations. Efficiency of the method is
demonstrated for finite basis sets constructed from B splines by calculating the one-loop self-energy
correction for a hydrogenlike ion.
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At present, a great variety of calculations in atomic
physics and quantum chemistry are based on finite basis
sets. The first successful attempts to utilize finite basis
sets in relativistic quantum mechanics were made many
years ago [1–6]. Application of B splines for constructing
basis sets [7–9] provided new impact to this field.
Nowadays, B splines are widely employed in computa-
tional atomic and molecular physics [10,11].

In contrast to the nonrelativistic case, the use of B
splines in the relativistic theory is generally accompanied
by the occurrence of spurious states [9]. For the attractive
Coulomb potential, spurious states appear for � > 0 as
the lowest bound states with nonphysical energies [� �

��1�j�l�1=2�j� 1=2� is the quantum number determined
by the angular momentum and the parity of the state].
The wave functions of these states oscillate rapidly and,
therefore, in many cases they may be disregarded in
practical atomic calculations [12,13]. However, since the
presence of the spurious states disturbs the spectrum, it
worsens the convergence properties of the basis-set cal-
culations in some cases. In particular, this can be a rea-
son of a poor convergence of the B-spline method in
calculations of pure radiative corrections for low- and
middle-Z systems [14]. To date, most of the QED calcu-
lations are performed by means of analytical or numeri-
cal representations for the Coulomb-Green function [15]
or by the space discretization method [16], in which the
spurious states are eliminated from the very beginning.
One may expect that a proper solution of the problem of
spurious states in the B-spline method would improve its
convergence properties in calculations of radiative
corrections.

A number of schemes for solving the problem of spu-
rious states were presented previously [9,17–22]. Most of
them are limited to a specific choice of finite basis sets
(see the related discussion below) or require considerable
modifications of the standard numerical procedure. For
this reason, their applicability to calculations of QED
effects has not yet been examined. We also find that
treating the problem by a particular choice of the bound-
ary conditions in the B-spline method [9], that in some
cases simply moves the spurious states to the end of the
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spectrum, does not provide any improvement in calcula-
tions of radiative corrections.

In this Letter, we formulate a new method that solves
the problem of spurious states and improves the conver-
gence properties of basis-set calculations. The efficiency
of the method is demonstrated for finite basis sets con-
structed from B splines by calculating the one-loop self-
energy correction for a hydrogenlike ion.

For the case of a central field V�r�, the Dirac wave
function is conveniently represented by

 �r� �
1

r

�
G�r���m�n�
iF�r����m�n�

�
; (1)

where n � r=r. With this representation, the radial Dirac
equations can be written as

H�� � E�; (2)

where (in units: �h � 1)

H� �

 
mc2 � V c�� d

dr�
�
r�

c� ddr�
�
r� �mc2 � V

!
(3)

and

��r� �
�
G�r�
F�r�

�
(4)

is the two-component radial wave function. The scalar
product of the two-component functions is defined by

h�aj�bi �
Z 1

0
dr�Ga�r�Gb�r� � Fa�r�Fb�r��: (5)

The radial Dirac equations can be derived from an action
principle �S � 0 with

S � h�jH�j�i � Eh�j�i; (6)

if proper boundary conditions for G�r� and F�r� are
implemented. The functions��r� can be approximated by

��r� �
X2n
i�1

ciui�r�; (7)

where the two-component functions ui�r� are assumed to
be square integrable, linearly independent, and satisfying
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proper boundary condition at r � 0 (see below). The
variational principle reduces to the following algebraic
equations:

dS=dci � 0; i � 1; 2; . . . ; 2n: (8)

This leads to a generalized eigenvalue problem:

Kikck � EBikck; (9)

where Kik � �huijH�juki � hukjH�juii�=2, Bik � huijuki,
and the summation over repeated indices is implied.

Let us first prove that the widely applied choice

ui�r� �
�
�i�r�
0

�
; i � 1; . . . ; n; (10)

ui�r� �
�

0
�i�n�r�

�
; i � n� 1; . . . ; 2n; (11)

where f�i�r�gni�1 are square integrable functions satisfy-
ing the boundary condition �i�0� � 0, results in the oc-
currence of spurious states. In this case, Eq. (9) takes the
form

�mc2 � V � E�ikpk � cDikqk � 0; (12)

c�Dy�ikpk � ��mc2 � V � E�ikqk � 0; (13)

where ��mc2 � V � E�, D, and Dy are n� n matrices
with elements

��mc2 � V � E�ik �
Z 1

0
dr�i�r���mc

2 � V � E��k�r�;

(14)

Dik �
Z 1

0
dr�i�r�

�
�
d
dr

�
�
r

�
�k�r�; (15)

�Dy�ik �
Z 1

0
dr�i�r�

�
d
dr

�
�
r

�
�k�r�; (16)

and pi � ci, qi � ci�n for i � 1; 2; . . . ; n. Let us consider
the nonrelativistic limit (c! 1) and introduce vectors P
and Q with components fpig

n
i�1 and fqig

n
i�1, respectively.

Then Eq. (13) yields Q � �1=2mc�DyP. Substituting this
expression into Eq. (12), we obtain

DDyP� 2m�mc2 � V � E�P � 0: (17)

For the pure Coulomb field, V�r� � �%=r (% > 0), intro-
ducing the matrix Cik � Dik � �m%=���ik, Eq. (17) re-
duces to

C�C
y
�P � 'P; (18)

where ' � �2m�E�mc2� �m2%2=�2� and the depen-
dence of the C matrix on � is explicitly indicated. For
�0 � ��, taking into account that C�� � �Cy

�, we find
that the corresponding eigenvalue equation

C�0C
y
�0P

0 � '0P0 (19)

can be written as

Cy
�C�P0 � '0P0: (20)

On the other hand, multiplying Eq. (18) with Cy
� yields
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Cy
�C��C

y
�P� � Cy

�C� ~P � ' ~P; (21)

where ~P � Cy
�P. This implies that each nonzero eigen-

value of C�C
y
� is an eigenvalue of Cy

�C�. Evidently, the
inverse statement can be proven in a similar manner and
the dimension of a nonzero eigenvalue subspace is the
same for C�C

y
� and Cy

�C�. Accordingly, the spectra of
C�C

y
� and Cy

�C� may differ only by the dimension of the
zero eigenvalue subspace. For finite matrices, the dimen-
sion of the subspace with ' � 0 is the same for C�C

y
� and

Cy
�C�, since the total number of eigenvectors, as well as

the dimension of the nonzero eigenvalues subspace, is the
same for C�C

y
� and Cy

�C�. Therefore, the finite matrices
C�C

y
� and Cy

�C� � C��C
y
�� have an identical spectrum.

Conversely, we know that the exact analytical solution of
the Dirac equation for the Coulomb potential yields dif-
ferent lowest bound-state energies for � < 0 and � > 0.
This is due to the fact that within the exact (infinite
dimension) treatment the subspace with ' � 0 may have
different dimensions for � < 0 and � > 0 cases. This can
easily be checked by solving the equation

�d=dr� �=r�m%=��G�r� � 0; (22)

which in case of finite dimensions is equivalent to the
equation Cy

�P � 0. Solving Eq. (22) yields G�r� �
A0r

�� exp�m%=�r�. For � < 0, this solution has the
proper behavior at r! 0 and at r! 1. However, this
does not hold for � > 0. Therefore, the states with ' � 0
and � > 0, obtained in the finite dimension approxima-
tion, are spurious. They correspond to energy E�mc2 �
�m%2=2�2. This ends the proof. It is obvious that spu-
rious states must occur for any other potential one is
dealing with in atomic calculations.

To eliminate the spurious states, in Ref. [18] ‘‘kineti-
cally balanced’’ Slater-type functions were employed.
Within this method, for � > 0 the lower components in
Eq. (11) are replaced by functions *i�r� which, in the
nonrelativistic limit, are related to the upper components
�i�r� in Eq. (10) via

*i�r� � �1=2mc��d=dr� �=r��i�r�: (23)

In Refs. [19,21], the basis set was constructed from
Gaussian spinors that satisfy the boundary conditions
associated with the finite nucleus. These functions auto-
matically satisfy the kinetic-balance condition for a finite
value of c and represent accurately the wave functions at
the origin of the nucleus. Both methods provide a high
accuracy in calculations of bound-state energies for ex-
tended nuclei. However, the applicability of these meth-
ods to calculations of the QED corrections has not yet
been investigated [23].

In the original version of the B-spline method [8–10],
to achieve that the first positive-energy states � > 0 cor-
respond to physical bound states, an additional term had
to be introduced in the Hamiltonian, which formally
implements the boundary condition [24]: G�R� � F�R�,
130405-2
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where R is the cavity radius, together with the condition
G�0� � 0. However, since the presence of the additional
term does not imply any practical advantages, it is usually
omitted in calculations. Instead, the boundary conditions
are generally implemented by eliminating the first and
the last basis function, which are the only ones that do not
vanish at r � 0 and r � R, respectively. This method was
successfully employed for calculations of the two-photon
exchange diagrams within the rigorous QED approach
[12] and for relativistic calculations of the recoil effect
[13]. However, its application to calculations of pure
radiative corrections [14] was less successful, compared
to the other methods [15,16]. We conjecture that this
would not be the case if the spurious states were elimi-
nated in a more natural manner than it was done in
Refs. [8,9].

It is known (see, e.g., Refs. [10,14,18]) that the case of
the pure Coulomb potential requires generally special
care in implementing finite basis-set methods. This is
due to the singularity of the Coulomb potential at r!
0. However, in practical calculations it is standard to
modify the potential to account for the finite nuclear
size, which eliminates this problem. For this reason and
for simplicity, we restrict our consideration to the case of
a finite nuclear-charge distribution, bearing in mind that
the limit of a point nucleus can be treated by extrapolating
a series of calculations for extended nuclei to vanishing
nuclear size. For extended nuclei, we propose to employ
the following basis set:

ui�r� �
�

�i�r�
1

2mc �
d
dr�

�
r��i�r�

�
; i � n; (24)

ui�r� �
� 1
2mc �

d
dr�

�
r��i�n�r�

�i�n�r�

�
; i > n; (25)

where the linearly independent functions f�i�r�g
n
i�1 are

assumed to be square integrable and to provide the bound-
ary condition: F�0� � 0 for � < 0 and G�0� � 0 for � >
0. This basis set has the form of solutions of a four-
component generalization of the Schrödinger equation
which simultaneously describes the nonrelativistic elec-
tron and nonrelativistic positron [25]. We state that this
basis set satisfies the following requirements: (i) It is
symmetric with respect to the replacement �! �� and
the interchange of the upper and lower components.
(ii) The functions u1; . . . ; un provide the correct relation
between upper and lower components for jE�mc2j;
jV�r�j � 2mc2, while the functions un�1; . . . ; u2n do the
same for jE�mc2j; jV�r�j � 2mc2. (iii) Calculations
utilizing the standard finite basis set determined by
Eqs. (10) and (11) can be easily adopted when employing
the basis (24) and (25). (iv) No spurious states occur for
attractive potentials nor for repulsive potentials. The
properties (i)–(iii) follow immediately from definitions
(24) and (25). The absence of spurious states can be
explained as follows. Performing similar steps as for
the derivation of Eq. (17), for jE�mc2j � 2mc2 we
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obtain

1

2m
LP� �V �mc2 � E�P � 0; (26)

where

Lik �
Z 1

0
dr�i�r�

�
�
d
dr

�
�
r

��
d
dr

�
�
r

�
�k�r�: (27)

Equation (26) takes the form of the ordinary Schrödinger
equation with l � j�� 1=2j � 1=2 in the finite basis
representation. As is known, it generates no spurious
states. The region jE�mc2j � 2mc2, where spurious
states may exist for repulsive potentials and for � < 0,
can be considered similarly. In this case, we obtain the
equation

1

2m
MQ� ��V �mc2 � E�Q � 0; (28)

where

Mik �
Z 1

0
dr�i�r�

�
d
dr

�
�
r

��
�
d
dr

�
�
r

�
�k�r�: (29)

Equation (28) has also the form of the ordinary
Schrödinger equation but with l0 � j�� 1=2j � 1=2. It
transforms into Eq. (26) under the replacements �! ��,
V ! �V,E! �E, andQ! P (charge conjugation sym-
metry) and does not generate any spurious states. This is a
consequence of the equivalent treatment of the positive
and negative energy states. For this reason, the new basis
may be termed conventionally as dual kinetic-balance
(DKB) basis.

The validity of statement (iv) has also been proven by
numerical calculations with �i�r� � Bi�r�, where Bi�r�
are the B splines defined on the interval �0; R� as in
Ref. [9]. The first and the last spline function have been
omitted. For j�j � 1, this provides the boundary condi-
tion at the origin, required above. To obey the same
boundary conditions for j�j � 2, strictly speaking, one
should remove the second spline as well. Our calculations
show, however, that this has practically no effect on the
results. We have found that removing the last two splines,
which would implement the boundary condition G�R� �
F�R� � 0, neither affects the results.

To test the accuracy of the computed wave functions in
the nuclear region, we have calculated the nuclear size
correction for the uniform sphere and the Fermi model
for the nuclear-charge distribution. For Z � 80 and the
uniform sphere model, our result for the 1s binding
energy, obtained with 30 spline functions, coincides
within nine digits with the result obtained by the
Gaussian basis-set method [21]. For Z � 92 and the
Fermi model (hr2i1=2 � 5:8604 fm), we have obtained
the nuclear size correction to be 198.81, 37.77, and
4.42 eV for 1s, 2s, and 2p1=2 states, respectively. These
values coincide with the exact ones within all digits
indicated and were obtained with 30 spline functions,
whereas a typical number of functions used in practical
130405-3
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calculations is 2 or 3 times larger. We have also found that
the DKB functions mimic equally well the behavior of
both radial Dirac components at the origin of an extended
nucleus. For instance, for the 1s state of Hg79�, using 60
basis functions and the sphere model with hr2i1=2 �
5:4359 fm (it corresponds to the nuclear radius used in
Ref. [21]), we get at r � 0:1 fm: G�r�=r � 2:1768 and
F�r�=r2 � �34:81 (in units: �h � c � m � 1). These val-
ues are in very good agreement with the exact ones,
G�r�=r � 2:1769 and F�r�=r2 � �34:83, and with the
values �G�r�=r�r�0 presented in Ref. [21].

Finally, let us consider the calculation of the one-loop
self-energy (SE) correction to the ground-state energy of
a hydrogenlike ion employing the new basis set.
Generally, the SE correction is expanded into the zero-,
one-, and many-potential terms. The ultraviolet divergen-
ces in the zero- and one-potential terms and in the coun-
terterm cancel each other and their evaluation can be
performed according to the formulas presented in
Ref. [26]. As for the many-potential term, although it
does not contain any ultraviolet divergences, its calcula-
tion is most difficult since it involves the summation over
the whole Dirac-Coulomb spectrum. In Table I, we com-
pare our results obtained for Z � 20 employing the DKB
basis set (24), (25) with �i�r� � Bi�r�, the old basis (10),
(11) with the same �i�r�, and the results of a calculation
using the analytical representation for the Coulomb-
Green function. This comparison clearly demonstrates a
significant improvement in accuracy, if the DKB basis is
employed instead of the old one.

This work was supported in part by RFBR (Grants
No. 01-02-17248 and No. 04-02-17574) and by the
Russian Ministry of Education (Grant No. E02-3.1-49).
The work of V. M. S. was supported by the Alexander von
TABLE I. The partial-wave contributions to the self-energy
correction (in atomic units) for the 1s state of hydrogenlike
calcium (Z � 20), calculated by different basis-set methods
and by the Coulomb-Green function (CGF) method. The results
are obtained with 60 basis functions and for the shell model for
the nuclear-charge distribution with R � 3:478 fm. In the
basis-set calculations, the part with j�j � 10 is obtained by
an extrapolation.

Term Old basis DKB basis CGF method

j�j � 1 0.848 691 0.848 750 0.848 741
j�j � 2 0.020 618 0.020 662 0.020 653
j�j � 3 0.005 302 0.005 331 0.005 326
j�j � 4 0.002 121 0.002 139 0.002 137
j�j � 5 0.001050 0.001062 0.001062
j�j � 6 0.000 590 0.000 597 0.000 598
j�j � 9 0.879127 0.879 303 0.879 288
j�j � 10 0.000 587 0.000 585 0.000 583
Total many potential 0.879 71 0.879 89 0.879 87(1)
Zero and one potential �0:815 626 �0:815 626 �0:815 626
Total SE 0.064 09 0.064 26 0.064 25(1)
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