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Degenerate Fermi gas interacting with molecules near a Feshbach resonance is unstable with respect
to the formation of a mixed state, in which atoms and molecules coexist as a coherent superposition. A
theory of this state is developed using a mapping to the Dicke model, treating the molecular field in the
single mode approximation. The results are accurate in the strong coupling regime relevant for current
experimental efforts. The exact solution of the Dicke model is exploited to study stability, phase
diagram, and nonadiabatic dynamics of the molecular field in the mixed state.
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Feshbach resonance scattering [1–4], at which pairs of
atoms can bind to form molecules at the same energy, has
been used to demonstrate new coherence phenomena in
cold atom systems. Those include, notably, the reversible
coherent atom-molecule transitions [5,6] which can be
accompanied by the Bose-Einstein condensation (BEC)
of molecules [7–9]. Recently, in search of fermionic
condensation, the focus shifted to Feshbach resonance
in cold fermion systems [10–12].

The physics near the resonance is sensitive to the
effects of quantum statistics. In particular, at positive
detuning from the resonance, molecules can coexist
with fermions [13–16], stabilized by Pauli blocking of
decay into the states below the Fermi level. The stability
and properties of the mixed state depend on the interac-
tion effects. Below we argue that the interactions enhance
the stability of the atom-molecule mixture, and lead to
molecules and atom pairs hybridizing to form a coherent
state. We address the problem of molecules interacting
with atoms by mapping it onto the Dicke problem [17]
of two-level systems coupled to a Bose field. This prob-
lem, being exactly solvable [18], allows to describe the
experimentally relevant regime of strong coupling. In the
Feshbach resonance case, the two-level systems represent
fermion pair states which can be occupied or empty, while
the Bose field represents molecules.

The coupling to molecules at positive detuning from
Feshbach resonance enhances pairing interaction be-
tween fermions, which is expected to stimulate BCS
superfluidity [13–16,19–21]. In addition, as noted in
Refs. [13,14], the strong coupling BCS condensation,
with the critical temperature up to a fraction of EF,
may depend on the presence of molecular field. This
conclusion was strengthened by a microscopic analysis
[20,21]. Ref. [16] studied fermion-molecule coexistence
at positive detuning using an effective theory of strong
coupling formulated in terms of low energy parameters.
It was noted that strong many-body effects exist even for
detuning well above the Fermi energy.
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In this Letter, we focus on the effects of molecule-atom
hybridization and develop an approach allowing to handle
this problem in the strong coupling regime. This is of
interest, since the experiment deals with systems where
the atom-molecule coupling, measured in the Fermi en-
ergy units, is very large. We will see that molecule-atom
mixing occurs in this situation in the range of detuning
much larger than the Fermi energy, i.e., on the energy
scale very different from that of fermionic condensate.
The energy scale for the latter, set by the pairing inter-
action strength, expected to reach 0:2EF at best [21], is
much smaller than the atom-molecule interaction. Thus,
accurate results can be obtained with the help of a simple
analysis which ignores direct pairing interaction between
fermions and relies on the exact solution of the atom-
molecule dynamics.

Below we analyze stability of fermions with respect to
molecule formation, and obtain a phase diagram. There is
a fairly wide region around the resonance, spanning both
positive and negative detuning, where atoms and mole-
cules coexist, forming a coherent state. At strong cou-
pling, this region has width of the order of g2n=EF, a
quantity which different estimates [15,16] put between
few tens and few hundred EF for current experiments
[10–12]. Also, we exploit the Dicke problem solution to
obtain nonlinear oscillations of the molecular field, in
which population coherently oscillates between molecu-
lar and atomic components. The results of stability analy-
sis are verified by comparing to the exact solution and to
the thermodynamic ground state properties.

We consider the problem of a Fermi gas interacting
with molecules in a single mode approximation which
takes into account only the lowest energy molecular state:

H �
X

��p;


��0�p a��a��g
X
p

�b�cp�H:c:��!b�b; (1)

���0�p � p2=2m� with ap
, a�p
 and b, b� the atom and
molecule operators, 
 the fermion spin, and ! the energy
of a molecule. The atom pair creation and annihilation
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operators cp � 1��
2

p �a�p#ap" � ap#a�p"�, c�p � 1��
2

p 	

�a�p"a
�
�p# � a��p"a

�
p#� describe pairs of fermions in a spin

singlet state that undergo conversion into molecules at
Feshbach resonance. The approximation (1) is justified by
the analysis below which finds that the energy gained by a
formation of a mixed atom-molecule state, with all mole-
cules occupying one state, is large compared to EF.

The utility of the single mode approximation (1) is that
it turns a difficult many-body problem into a well-known
exactly solvable problem. The mapping is achieved by
identifying the pair operators c�p , cp with pseudospin
Pauli operators [22], 



p � 1
2 �


x
p 
 i
yp�, and noting that

their product gives the particle number operator np �

a�p ap in the subspace of the many-body Hilbert space in
which both states p and �p are simultaneously filled or
empty, 2c�p cp � np � n�p � 0; 2. More formally, defin-
ing 
zp � �
�

p ; 
�
p , one verifies that the standard Pauli

spin commutation relations hold:

�
�
p ; 
zp � �2
�

p ; �
�
p ; 
zp � 2
�

p: (2)

This enables one to bring the Hamiltonian (1) to the form
containing the spin variables only,

H �
X0

p

�
��0�p 
zp � gb
�

p � gb�
�
p

�
�!b�b; (3)

where the sum is taken over singlet pair states with
momenta p and �p. We note that the states with np �
n�p � 1, with only one of the p and �p particle states
filled and the other one empty, are decoupled and do not
participate in the dynamics defined by (3). The reason for
this decoupling is that these states have not enough par-
ticles to form a molecule, but also one particle too many
to contribute to molecule dissociation.

The spin-boson problem (3) is the Dicke model of
quantum optics [17,18,23]. Hepp and Lieb [18] found
that the Hamiltonian (3) is integrable, and constructed
exact many-body states. Besides the total particle number

N � 2b�b�
X
p

�1� 
zp�; (4)

there are also infinitely many nontrivial conserved quan-
tities underpinning the exact solubility.

Here we employ the Hamiltonian (3) to assess stability
of the Fermi gas with respect to molecule formation.
The spin dynamics described by (3) is of the Bloch
form, _
 � i�H ; 
 � 2hp 	 
, with an effective mag-
netic field hp � �gb0; gb00; p2=2m�, where b � b0 � ib00 is
a c-number describing the molecular state.

The Bloch equations of motion for the spin components



p , 
zp, and b take the form

i _
�
p ��2��0�p 
�

p �gb

z
p; i _
�

p �2��0�p 
�
p �gb


z
p; (5)

i _
zp � 2gb
�
p � 2gb�
�

p ; i _b � g
X0

p


�
p �!b: (6)
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From a mathematical standpoint, Eqs. (5) and (6) de-
scribe collective dynamics of a Bloch spin 1=2 ensemble,
with the coupling between the spins provided by the
‘‘magnetic field’’ hp transverse components which de-
pend on the spin variables via an equation for b.
Physically, the transverse spin components 



p character-
ize coherence between the filled and unfilled pair state,
while 
zp describes the number of pairs.

Since the field b is a c-number, the operator Eqs. (5) and
(6) are linear, and thus the spin expectation values are
subject to evolution equations of the form identical to (5)
and (6). In the absence of molecules, we have b � 0, and
all the spins are aligned in the 
z direction, with prob-
abilities determined by occupation of pair states: h
zpi �

p" � p# � n2p � �1 � np�
2 � 2np � 1, where np �

�e���
�0�
p ��� � 1��1 in thermal equilibrium. This state, con-

taining only fermions but no molecules, hbi � h


p i � 0,

is stationary for the problem (5) and (6).
To assess stability with respect to molecule formation,

we linearize Eqs. (5) and (6), introducing �
�
p ; �b /

e�i�t, �
�
p ; �b� / ei�

�t. From the coupled linear equa-
tions for �
�

p and �b, we obtain the eigenvalue equation

� � !� g2
X
p

h
zpi

2��0�p � �
: (7)

To make the formally divergent sum over p well-behaved,
we renormalize ! by subtracting the term �! �

g2
P
p�2�

�0�
p ��1. The shift !! !� �! brings the posi-

tion of the Feshbach resonance to ! � 0 for zero particle
density, while Eq. (7) transforms to

� � !� g2
X
p

�
2np � 1

2��0�p � �
�

1

2��0�p

�
(8)

with the sum now converging at large p.
The solution of Eq. (8) can be real or complex, depend-

ing on the value of !. Complex-valued � � �0 � i�00

indicates an instability, with �00 describing the instability
growth rate. Numerical analysis of Eq. (8) and simple
analytic arguments reveal that the instability occurs in an
interval !0 <!<!1 with !0;1 being a function of tem-
perature. The values !0;1 can be inferred by noting that
the complex � becomes real at ! � !0;1, which gives the
condition �00 � 0. When does Eq. (8) admit real solu-
tions? This is possible for � � 2� � p2

F=m, since 2np �
1 changes sign at the Fermi energy, and for � � 0. (For all
positive � except � � 2�, the residue h
zpi � 2np � 1
generates a finite imaginary part of �.) With � � 2�,
one obtains

!1 � 2��
g2

2

X
p

�
1� 2np

��0�p ��
�

1

��0�p

�
; (9)

while !0 is determined by a root � < 0 of Eq. (8) which
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can be found numerically. This indicates that atoms are
stable at!>!1, metastable at!<!0, and at!0 <!<
!1 can exist only in a state coherently mixed with the
molecules (Fig. 1). We note that, since !0 < 0 and !1 >
2�, coexistence is favored by interaction. Moreover, at
strong interaction, the detuning range where coexistence
takes place becomes very large: �! ’ g2n=EF � EF.

The upper temperature at which !0 � !1 is deter-
mined by the condition ��T� � 0. For a two-species
Fermi gas of total particle density n, one has n �

2
P
pnp�� � 0� � 0:0972�m=��3=2 which gives T� �

0:9885EF. Interestingly, at low temperature T � T�, the
instability is pushed to higher detuning, !1 �
2�� g2� ln��=T�, due to a BCS-like log divergence at
the Fermi level p � pF.

It is instructive to look at the JILA experiment pa-
rameters (Fig. 1). The estimate of coupling �! �
g2n=EF ’ 60 �K � 2 	 1:3 MHz gives a typical en-
ergy gained by the system via molecules and atom pairs
hybridization, which is much larger than EF. This leads
to pair size in the mixed state � �h=�2m�!�1=2 much
smaller than fermion wavelength p�1

F . This indicates
that the kinetic energy of atoms and molecules does not
play a significant role, justifying the single mode
approximation.

Nonlinear dynamics at instability can be found with
the help of the mapping to Bloch spins. Defining r
p �

h


p i, rzp � h
zpi, and rescaling gb! b, we write
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FIG. 1 (color online). Phase diagram of coupled atom-
molecule system obtained from Eq. (8) for 40K system [10] at
particle density n � 1:8	 1013 cm�3, Fermi energy EF �
0:35 �K, and coupling strength g2n=EF � 60 �K. (The cou-
pling was estimated using the microscopic theory of Feshbach
resonance [15], applied to the conditions of the JILA experi-
ment [10]). Inset: Effective potential schematic illustrating the
behavior in the three regions.
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i _r�p � 2��0�p r�p � brzp; i _rzp � 2br�p � 2b�r�p ; (10)

and i _b � !b� g2
P
pr

�
p . Since the norm is preserved by

Bloch time evolution, jrpj2 � 4r�p r�p � �rzp�2 is conserved
for each spin. We apply rotation,

r�p ! e�i#tr�p ; r�p ! ei#tr�p ; b! e�i#tb (11)

with the value # to be determined later. This is equivalent
to shifting 2��0�p ! !p � p2=m� # and !! !� #.

The resulting problem possesses real-valued solutions
which can be obtained from the standard ansatz [25]

r�p � Apb� iBp _b; rzp � Dp � Cpb2: (12)

This ansatz automatically satisfies the imaginary part of
Eq. (10) for r�p as well as the equation for rzp, provided
that Ap � !pBp, Cp � 2Bp, while the real part of
Eq. (10) for r�p generates a set of equations

Bp �b�!pApb� b�Dp � Cpb2� � 0: (13)

The constant of motion jrpj2 � 4r�p r�p � �rzp�2 provides a
first integral of Eq. (13):

4�!2
pb2 � _b2� � �2b2 �Dp=Bp�2 � B�2

p jrpj2; (14)

where we expressed Ap and Cp through Bp.
Evidently, since the function b�t� is the same for all

spins, the dependence on p has to drop out of Eq. (14),
giving a single equation for b of the form

_b 2 � �b2 � b2���b2� � b2�; b� < b�; (15)

which is possible with the following choice of constants:
Dp=Bp�!

2
p � b2� �b2�; D

2
p� jrpj2 � 4b2�b

2
�B

2
p. These

equations define the modulus of Bp and Dp only. The
sign has to be determined from initial conditions:
sgnBp � sgnDp � sgnrzp.

The solution of Eq. (15) is an elliptic function b�t� �
b�dn�b�t; (2� with (2 � 1� b2�=b2� [26], oscillating pe-
riodically between b� and b�. At b� � b�, the solution
is approximately given by a train of weakly overlapping
solitons with period ) � �2=b��ln�4b�=b��,

b�t� �
X
n

*
cosh*�t� tn�

; tn � )n (16)

(Fig. 2), where each soliton in Eq. (16) is a solution of
Eq. (15) with b� � 0, b� � *.

The values b
 and # are fixed by the equation for b.
The latter is consistent with the ansatz (12), giving

1 � g2
X
p

rzp����������������������������������������������������������
�!2

p � b2� � b2��
2 � 4b2�b

2
�

q ; (17)

! � #� g2
X
p

� !przp����������������������������������������������������������
�!2

p � b2� � b2��
2 � 4b2�b

2
�

q �
1

2��0�p

�
;
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FIG. 2 (color online). Pseudospin precession (12) for fermion
pair states corresponding to the soliton train (16) is shown on
the Bloch sphere rx;y;xp � h
x;y;xp i. Parameters used: b�=b� �
0:1, #� 2EF � �b�, constant density of states. The energies
above and below the Fermi level (solid and dashed curves) are
chosen as indicated by arrows in the inset. Note that each state
completes a full 2 Rabi cycle per soliton. Inset: Radius rp �

�b2� � b2��=�!
2
p � b2� � b2�� and center zp � �1� 2np�!

2
p=

�!2
p � b2� � b2�� of trajectories vs energy +�p� � ��0�p � EF.

Note the absence of particle-hole symmetry.
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with rzp � 2np � 1 determined by the initial energy dis-

tribution np. Equation (17) implies that !p � 2��0�p � #
changes sign below the Fermi level, #< 2EF. Thus there
is no particle-hole symmetry in the dynamics even in the
case of constant density of states, as illustrated in Fig. 2.

The properties at equilibrium can be understood by
considering the limit b� ! b� � b0 when oscillations
are absent. The energy distribution np can be easily
obtained in the pseudospin picture, taking into account
that each spin is presented with a tilted field hp �

�b0; 0; �
�0�
p ��� which gives np � 1=�1� e�jhpj�. The

molecular field b0 in the ground state is determined by

! � #� g2
X
p

�
sgn!p�1� 2np����������������������

!2
p � 4b20

q �
1

2��0�p

�
(18)

along with the constraint N � 2b20=g
2 � 2

P
pnp.

Here we use Eq. (18) to verify the above stability
analysis. To determine when the atoms can be stable
with respect to hybridizing with molecules, we set b0 �
0 and immediately recover Eq. (8) for the instability
exponent �. The difference, however, is that # defined
by Eq. (18) is real, while � is complex. Atoms’ stability is
thus indeed equivalent to the existence of a real-valued
130403-4
solution of Eq. (8). One possibility to have such a solution
is to set # � 2�, which eliminates the log divergence in
(18) at !p � 0. The other possibility is to have �;# � 0.
Put together with the properties of equilibrium state at
finite b0, this confirms the above estimate of the coex-
istence region (8) and the conclusion that pure atom state
is metastable at the detuning !<!0.

In summary, this work provides a phase diagram and
an exact solution for the atom-molecule dynamics in the
regime of strong coupling. The characteristic energy
scales are estimated to be much larger than EF, which
makes the Dicke model approximation ignoring molecu-
lar dispersion, as well as the BCS fermion pairing effects,
accurate enough. A wide atom-molecule coexistence re-
gion is predicted in which atom pairs and molecules
hybridize into objects of size much less than Fermi
wavelength p�1

F .
Note added.— After having completed this work we

became aware of the article by Andreev, Gurarie and
Radzihovsky [27], which exploits the mapping to the
Dicke model, while focusing on the weak coupling limit.
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