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We consider a two-species degenerate Fermi gas coupled by a diatomic Feshbach resonance. We show
that the resulting superfluid can exhibit a form of coherent BEC-to-BCS oscillations in response to a
nonadiabatic change in the system’s parameters, such as, for example, a sudden shift in the position of
the Feshbach resonance. In the narrow resonance limit, the resulting solitonlike collisionless dynamics
can be calculated analytically. In equilibrium, the thermodynamics can be accurately computed across
the full range of BCS-BEC crossover, with corrections controlled by the ratio of the resonance width to
the Fermi energy.
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FIG. 1. Atomic momentum distribution np displaying oscil-
lations between a Fermi sea and Bose-condensed molecules.
The atomic depletion in np of width 
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appears at the

molecular energy determined by the detuning !0.
Advances to control interactions in trapped degenerate
gases by tuning through a Feshbach resonance (FR), led
to observation of molecular Bose-Einstein condensation
(BEC) in bosonic [1] and fermionic atomic gases [2,3].
Such tunability allows studies of these systems in previ-
ously unexplored regimes, observing paired fermionic
condensates along the crossover between the BCS regime
of weakly-paired, strongly overlapping Cooper pairs, and
the BEC regime of tightly bound, weakly-interacting
diatomic molecules. An even more exciting possibility,
unavailable in other related (e.g., superfluids in condensed
matter) systems, is the nonadiabatic switching of system’s
parameters, thereby allowing access to highly coherent
and nonequilibrium quantum states of matter. For bo-
sonic 85Rb atoms, this was recently realized in experi-
ments by Donley et al. [1]. Using short magnetic field
pulses that briefly bring the system close to a nearby FR,
they observed coherent oscillations in the atomic conden-
sate corresponding to Rabi oscillations between atomic
and molecular condensates [4].

In this Letter we study a zero-temperature collisionless
dynamics of a two-species degenerate atomic Fermi gas
near a FR that can be tuned through the Fermi sea. The
goal is to understand the evolution of the system follow-
ing a nonadiabatic change in an externally-controlled
system’s parameter, such as the detuning of the FR, !0,
relative to the Fermi energy, �F.

Our main result is the demonstration that such a system
exhibits collective coherent oscillations of the Fermi gas
between BCS- and BEC-like paired superfluid states.
This dynamics is a paired-fermions analog of the
atomic-to-molecular condensate Rabi oscillations ob-
served by Donley et al. in trapped bosonic gases. In the
narrow FR, we calculate the frequency and amplitude of
these oscillations and find their analytic form. Our work
directly builds on the recent discovery by Barankov et al.
[5] of integrable dynamics in the BCS model following a
sudden change in the negative s-wave scattering length.
The model we study and its analysis apply across the full
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BCS-BEC crossover. For large positive detuning
(!0=2 � �F), our results reduce to those of Ref. [5]. In
the new complementary regime, !0=2< �F, the atoms
with energy near !0=2 can periodically interconvert with
molecules. The resulting hole-burning (Fig. 1) in the
atomic momentum distribution should in principle be
observable in the time-of-flight experiments.

We also analyze the thermodynamics along the full
range of the BCS-BEC crossover [6,7]. We show that for
a FR that is narrow compared to the Fermi energy, and a
background scattering length abg that is short compared
to the interatomic spacing, n�1=3, low-temperature ther-
modynamics can be accurately computed analytically [8].

Our starting point is the Hamiltonian [9]
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p�âp� �

X
p

�
�0 �

�p
2

�
b̂ypb̂p

�
X
p;q

g����
V

p �b̂qâ
y
p�q"â
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describing fermionic atoms, created by âyp� with momen-
tum p, ‘‘spin’’ � �"; # , and kinetic energy �p � p2=2m,
that are coupled to diatomic molecular (resonant) states
created by b̂yq . The position and the width (molecular
lifetime) of the FR are, respectively, controlled by the
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bare detuning energy �0 and coupling g, the former easily
experimentally tunable by a magnetic field. We have
neglected nonresonant atom-atom and molecule-
molecule interactions that we expect near a FR to be
subdominant to the resonant scattering.

In what follows, we focus on molecules with zero
center of mass momentum, b̂0, neglecting molecules
b̂q�0 excited above the molecular condensate. In equilib-
rium, this is justified at low temperatures and weak
interactions. However, for nonequilibrium dynamics, the
validity of this approximation is a more delicate issue, as
one might expect such excitations to be induced by a
nonadiabatic shift in the FR. Nevertheless, physically
we expect that for an initially homogeneous condensate
[9] and weak interactions, the dynamics will be domi-
nated by b0�t
. However, on sufficiently long time scales,
the bq�0 excitations and particle collisions should deco-
here and damp out the collective BEC-BCS oscillations
studied here, allowing a slow relaxation to a new equi-
librium state for the shifted FR. Determining this relaxa-
tional dynamics is beyond the scope of the present work.
We thus replace b̂q in Eq. (1) by b̂0�q;0 � b̂�q;0. Expected
macroscopic occupation (hb̂yb̂i � 1) of the molecular
level �0 allows us to neglect quantum molecular fluctua-
tions and replace operators b̂�t
; b̂y�t
 by the c-numbers
b�t
; b��t
.

We now look for time-dependent fermionic operators
in terms of reference, time-independent fermions
�̂p"; �̂�p#, related to âp;��t
 through the Bogoliubov am-
plitudes up�t
, vp�t
 by âp" � u�p�̂p" � vp�̂

y
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p" with a constraint u�pup � v�

pvp � 1,
that ensures fermionic anticommutation relations. The
Heisenberg dynamics is then encoded in the equations
of motion for up�t
, vp�t
, and b�t
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The dynamical evolution Eqs. (2) and (3) preserve pair
correlations of fermions. Accordingly, we choose the
initial state to be of the BCS type, j��0
i �

Q
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a
y
p"a

y
�p#�j0i. As a result of the time evolution, the

fermion wave function preserves the same form with
time-dependent factors up�t
 and vp�t
.

Following Ref. [5], we utilize Anderson’s spin analogy
for the BCS problem [10] and look for a vector represen-
tation of these equations in terms of the variables Sp �

Sxp � iSyp � 2v�
pup; Szp � vpv�

p � upu�p that satisfy
jSpj

2 � S�pSp � SzpSzp � 1. Eq. (2) becomes
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and has a form of Bloch equations for a spin precessing in
an effective (p-dependent) field, whose azimuthal dy-
namics is in turn self-consistently determined by molecu-
lar (b�t
) evolution, Eq. (3). It is now straightforward to
check that these equations can be solved by an ansatz [5]
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Here 
�, 
�, and ! are parameters characterizing the
periodic instantonlike solution ��t
 expressible in terms
of an elliptic integral. It follows from Eq. (6) that b�t
=
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K�m
 is the complete elliptic integral of the first kind.
This ansatz is compatible with Eq. (3) provided that
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Equations (9) and (10) determine ! and 
� in terms of
the experimentally controlled (initial conditions) pa-
rameters �0 and 
�. As we will see below, the first of
these equations is a nonequlibrium generalization of the
BCS gap equation. The second one simply reflects the
conservation of the total particle number, dN

dt � 0, with

N � 2b�b� V
Z d3p

�2&
3
�Szp � 1
: (11)

We note that Eq. (7) only determines Cp and Dp up to a
p-dependent sign that one would expect to be fixed by the
initial fermion momentum distribution, encoded in
j��0
i. With the exception of a filled Fermi-sea initial
condition, ��0
 � 
� � 0, the solution encoded in Cp

and Dp, Eq. (7), does not correspond to initial conditions
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(up�0
 and vp�0
) characteristic of a ground state of the
Hamiltonian (1) for any value of bare detuning �0.
Nevertheless, we fix the sign of Cp to most closely match
np � 1

2 �S
z
p � 1
 to the initial fermion momentum distri-

bution. For a large positive detuning, this corresponds to a
Fermi-Dirac function with discontinuity at the chemical
potential ( that separates the holelike and particlelike
states. Combining this criterion with Eq. (7), we find
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where, as in equilibrium problem, ( is implicitly deter-
mined by the conserved total particle number N, Eq. (11),
that reduces to N � V

R d3p
�2&
3

�1�Dp
.

Equation (9) involves a divergent integral, arising from
an unphysical aspect of the model Eq. (1), that the atomic
modes with an arbitrarily large energy interact with the
molecular ones with equal strength g. In a more realistic
model, the momentum dependence of the coupling g
would cut off this divergence. As usual, our ignorance
of this high energy physics can be buried in a (UV cutoff-
dependent) relation between the parameter �0 appearing
in H and the position of the physical FR, !0.

To see this, we calculate the two-atom scattering am-
plitude within the model Hamiltonian Eq. (1). It is com-
pletely determined by the self-energy of the molecules,
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that diverges in exactly the same way as the integral in
Eq. (9). Since ��E
 enters the retarded molecular propa-
gator Gb�E
 � �E� �0 � ��E
��1 in combination with
�0, we can trade in �0 for the physical FR detuning !0

according to !0 � �0 � g2
R d3p
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p2 . This leads to the

two-atom scattering amplitude f � ��=
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m

p

E�!0�i�
���
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p that is

consistent with the generic form based on unitarity [11]
and is identical to that of the Fano-Anderson model
(equivalent to our model at the two-body scattering level)
[12]. We see that the scattering phase changes by & as the
energy changes from below to above the physical (renor-
malized) FR, !0, with finite width for positive detuning,
!0 > 0, controlled by � � g2m3=2=4&. In contrast for
negative detuning, !0 < 0, the scattering amplitude has
a real pole at negative energy (a bound state in the open
channel) that corresponds to a real molecular state [13].

With above renormalization of detuning, the nonequi-
librium gap Eq. (9) becomes

!0 �! �
g2

2

Z d3p

�2&
3

�
�2�p �!
Cp �

2m

p2

�
; (14)
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where all the integrals are now convergent. This, together
with the atom-conservation condition, (10), the total
atom-number Eq. (11), the detuning !0, and the initial
molecular density 
�, determines the condensate fre-
quency ! and the molecular density maximum 
� that
controls the period of oscillations, in accordance with
Eq. (8). Although the complete solution requires a nu-
merical evaluation of the integrals, here we will focus on
two analytically tractable regimes: (i) 
� � 
� � 
�

that corresponds to small oscillations of the condensate
about the BCS-BEC ground state, and (ii) 
� � 
� that
corresponds to the evolution of the filled Fermi sea,
following a large downward shift in detuning.

Let us first consider the regime of small oscillations

� � 
� � 
� about a BCS-BEC ground state.
Limiting our analysis to !> 0, we find that Eq. (10)
constrains ! to be close to 2(. This, together with the
condition Eq. (14), gives (at 
� � 
� � 
 and ( �
!=2)
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2
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This coincides with the BCS-BEC gap equation that can
be derived in the equilibrium treatment of this problem
[14]. It relates the condensate density 
=g to the FR !0,
with ( determined by Eq. (11). Simple analysis of these
equations shows that for a large positive detuning, !0 �
�F, molecules are strongly suppressed, leading ( to
‘‘stick’’ to �F, and to a conventional atomic BCS ground
state, with 
�!0
 � 8e�2�Fe

��!0�2�F
=g2-��F
 (-��
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m

3
2�

1
2=

���
2

p
&2 is the atomic density of states). In this far

off-resonance BCS regime, the accuracy of the mean-field
treatment is controlled by the ratio of the width of the FR
to Fermi energy, namely, by the dimensionless parameter
�2=�F [8].

As the detuning !0 is lowered toward and below �F,
the chemical potential begins to track the detuning,
(�!0
 � !0=2�O�g2-�!0=2
�, with atoms from states
between �F and (�!0
 converting into Bose-condensed
molecules. The density of these tightly bound molecules
that coexist with BCS’s Fermi sea determine the gap,
which displays a rounded mean-field behavior


equil�!0
 �
�����������������������������������������������
25=2

3& ���3=2F �(�!0

3=2�

q
. In the g ! 0 limit,

!0 crossing of �F is a genuine quantum transition, with an
upper-critical dimension of duc � 2, and is therefore
mean-field in 3D [15]. A finite atom-molecule coupling
g rounds the transition into a smooth crossover near �F,
that for small g (i.e., narrow FR, �2 � �F) is therefore
also accurately described by the mean-field theory sum-
marized by Eqs. (11) and (15). Clearly, no additional
anomalies appear when the 2-body FR (!0 � 0) is
crossed, since by that point nearly all atoms are bound
up into well-ordered Bose-condensed molecules. In this
(< 0 BEC regime, the remaining dilute fermionic atoms
130402-3
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are paired but are nondegenerate, and therefore realize a
‘‘strongly-coupled’’ BCS state [16]. This picture of the
ground state (easily generalizable to a finite temperature
[14]) is consistent with recent observations by Regal, et
al. [2], who find that molecules appear at about 0.5 Gauss
above the experimentally determined 2-body FR (in our
interpretation corresponding to !0 � 2�F).

The solution, Eq. (5), then describes small oscillations
about this equilibrium BCS-BEC state, with the period
T � &=
 given by Eq. (8). Because ! � 2(, for a suffi-
ciently small oscillations, the momentum distribution
np�t
 �

1
2 �S

z
p�t
 � 1� only changes near the Fermi sur-

face, �p � (.
The other interesting limit, 
� ! 0, 
� � 
 de-

scribes oscillations between a Fermi sea (a normal
‘‘metal,’’ with ( � �F) of atoms and bosonic molecules,
following a nonadiabatic shift of detuning from 1 down
to !0. In this regime, Eqs. (10) and (14) reduce to
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Simple integration of the atom-number conservation
(second) equation above gives


 � g2-�!=2
tan�1��2�F �!
=
�: (17)

The behavior then depends qualitatively on whether the
detuning !0 is shifted to the BCS (!0=2 � �F) or to the
BCS-BEC (0<!0=2< �F) regime, i.e., above or below
the Fermi surface. In the former case, Eq. (17) reduces to
2�F �! � 
2=g2-�!=2
 � 
, with an exponentially

suppressed BCS-like gap 
 / e
�

!0�2�F
g2-��F 
 given by the gap

(first) equation in Eq. (16). Hence in this regime, for
narrow FR, ! � 2�F and oscillations are confined to
the vicinity of the Fermi surface.

In contrast, for the detuning shift below the Fermi
surface, 0<!0=2< �F, it is now Eq. (17) that deter-
mines the molecular density. It gives 
 � g2-�!=2
=2 �
�

����
!

p
�O�1
, while the gap equation gives !0 �! �

g2-��F
 �O�1
 � !0, enforcing the molecular energy
! to stick to the detuning !0. We note that although 
 �

�
������
!0

p
is much larger (scales as g2 rather than exponen-

tially suppressed in 1=g2) than for the detuning into the
BCS regime, it is much smaller than the equilibrium

equil�!0
, found as the solution to the equilibrium gap
equation Eq. (15) in this regime. This suppression of the
condensate oscillations is due to energy conservation
between the atoms in the Fermi sea and the molecules.
For a narrow FR resonance, �

������
!0

p
� !0 < �F it is only a

small fraction of atoms in the Fermi sea that are in the
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immediate vicinity (set by the resonance width �
������
!0

p
) of

!0 that can resonantly bind into molecules. The resulting
resonant atom-molecule interconversion leads to a narrow
oscillatory depletion of the Fermi sea, illustrated in
Fig. 1, with a period of oscillations that diverges as T /

2

�

log�
�


�

 in the limit of the ‘‘normal’’ Fermi sea (
� !

0) as the initial condition.
Analysis of the gap and atom-conservation equations

shows that the amplitude of the atom-molecule oscilla-
tions vanishes as the molecular energy ! � !0 ap-
proaches zero. This is again enforced by the energy
conservation that, in the absence of other degrees of free-
dom (e.g., molecules above a condensate, bq�0), forbids
conversion of molecules at negative energy !0 into atoms
at positive energy �p. We leave analysis of the dynamics
that incorporates these additional degrees of freedom to
future research.
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Note added.— After this work was submitted for pub-
lication, we received a manuscript from Barankov and
Levitov [17] where the model Eq. (1) was studied with
results that are in agreement with those presented here.
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