
VOLUME 93, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S week ending
17 SEPTEMBER 2004
Multiple-Time Scale Accelerated Molecular Dynamics: Addressing the Small-Barrier Problem
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We present a method for accelerated molecular-dynamics simulation in systems with rare-event
dynamics that span a wide range of time scales. Using a variant of hyperdynamics, we detect, on the fly,
groups of recurrent states connected by small energy barriers and we modify the potential-energy
surface locally to consolidate them into large, coarse states. In this way, fast motion between recurrent
states is treated within an equilibrium formalism and dynamics can be simulated over the longer time
scale of the slow events. We apply the method to simulate cluster diffusion and the initial growth of Co
on Cu(001),where time scales spanning more than 6 orders of magnitude are present, and show that the
method correctly follows the slow events, so that much larger times can be simulated than with
accelerated molecular dynamics alone.
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A significant challenge in materials simulation is to
achieve long-time simulations with accurate atomic de-
tail. Accelerated molecular-dynamics (MD) methods [1–
5] have shown great promise in systems whose dynamical
evolution is governed by rare events. By treating rare
events within the framework of transition-state theory,
these methods can probe time scales that are many orders
of magnitude longer than those in conventional MD
simulations while retaining the accuracy of conventional
MD. However, the applicability of these and other related
methods has an inherent limitation: The achievable time
scale is limited by the fastest rate processes. In many
systems, the rates of the various available processes can
span many orders of magnitude, due to the exponential
dependence of rates on temperature and energy barriers.
The effectiveness of rare-event simulations is limited for
systems such as these.

Particularly problematic is the case where fast pro-
cesses are grouped together in pools of shallow energy
minima that are separated from the rest of the phase space
by high energy barriers. The system may perform mil-
lions of repeated transitions between these states before
escaping away and, as a result, the overall progress of the
simulation is curtailed significantly. This ‘‘small-
barrier’’ problem has been recognized in studies of metal
thin-film epitaxy [6–8]. However, small barriers are ubiq-
uitous and this problem could extend to a variety of rare-
event systems, including protein folding, chemical reac-
tion dynamics and catalysis at surfaces, polymer and
glass dynamics, as well as transport on and within solids.

In this Letter, we propose a method for addressing the
small-barrier problem with accelerated MD. Our method
is based on the bond-boost method (BBM) [5], which is a
variant of hyperdynamics [1]. We propose an extension of
the BBM to detect, on the fly, groups of recurrent states
connected by small energy barriers and modify the
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potential-energy surface (PES) locally to consolidate
them into large, coarse states. This procedure enables
successful application of accelerated MD to systems ex-
hibiting multiple-time scale processes and allows for
substantially larger time boosts than can be achieved by
accelerated MD alone.

Hyperdynamics methods are based on modification of
the PES around local energy minima but not at transition
states [1]. When a bias potential �V�x� is added, the
boosted dynamics over a time �tb is equivalent to the
original dynamics over a longer time �t:

�t � �tbhe
��Vib; (1)

where � � 1=kBT and hib represents a canonical average
on the boosted PES. The time boost�t=�b increases with
stronger boost �V�x� and decreasing temperature.

Various recipes for constructing �V�x� have been pro-
posed [1–4], the latest being our BBM [5], which achieves
high efficiency with negligible overhead through a simple
construction of the boost potential. In the BBM�V�x� is a
function of the nearest-neighbor bond lengths frig. It has a
maximum value of �Vmax at the local minimum configu-
ration, and goes to zero when the relative stretch or
compression �i � �ri � r0i �=r

0
i of any bond surpasses a

threshold q, where r0i is a local equilibrium bond length.
The functional form is

��x� 	 �VmaxA��max�
XNb

i�1

�V���; (2)

where �max � maxifj�ijg, Nb is the number of bonds in-
cluded in the boost, �V��i�is the boost applied to each
bond, and A��max� is an envelope that has values between
[0. . .1] and becomes zero when �max > q. Each time the
system reaches a new state, conjugate-gradient minimi-
zation is employed to find the new configuration fr0i g.
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Subsequently, the system is equilibrated in the new mini-
mum and the boost potential is turned on. When the
threshold q is exceeded, there is a short waiting time,
after which minimization recommences to detect a new
state, and the cycle repeats.

The effectiveness of the BBM (and all rare-event meth-
ods) is greatly curtailed when pools of shallow states are
present, as we illustrate in Fig. 1. In the BBM, the time
boost is controlled by the magnitude of the boost poten-
tial�Vmax [cf., Eq. (2)], which can, in principle, be tuned.
However, there is an upper limit on the achievable boost,
as a strong boost that exceeds the transition-state barrier
does not preserve the correct dynamics of the low-barrier
processes. As illustrated in Fig. 1(a), the shallow states
K; L; M; and N become local peaks in this case and the
minima are not effectively sampled, as the system is
pushed toward the transition states. With a small boost,
appropriate for shallow minima [cf., Fig. 1(b)], the system
will rapidly and repeatedly cycle among K, L, M, and N
and escape to state D only over a much longer time scale.
Since MD simulations are limited in the total number of
time steps they can cover, the bulk of the simulation time
may be spent on these repeated transitions and evolution
of the system is limited. Our proposed solution to this
problem is to combine the large boost shown in Fig. 1(a)
with ‘‘bridge potentials’’ �Vbridge, which span the tran-
sition states among states K, L, M, and N, as shown in
Fig. 1(c). In doing this, we consolidate the shallow states
K, L, M, and N into a single, coarse state. This procedure
rests on the observation that equilibrium among the shal-
low states is reached long before any slow event N ! D
occurs. Since, on the time scale of the slow escape, the
‘‘fast’’dynamics becomes irrelevant, we drop the require-
ment that�V�x� � 0 at the fast transition states. Thus, for
the escape rate kN!D the entire set K [ L [M [ N acts as
the equilibrium ‘‘initial state’’ for the transition-state
theory rate process.
FIG. 1. One-dimensional illustration of the small-barrier
problem: (a) a large boost, (b) a small boost, (c) with bridging
potential �Vbridge.
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The first issue in implementing the scheme shown in
Fig. 1(c) is definition and detection of fast, recurrent
processes. A preliminary analysis can determine the
range of energy barriers corresponding to the ‘‘slow’’
and fast time scales. Based on this, we define a threshold
barrier �Eth and assign all processes having lower bar-
riers to the class of fast processes. The validity of treating
the fast states as equilibrated depends on the number of
fast states in the recurrent group, the number of slow
exits, and on the energy gap between fast and slow bar-
riers. For example, one can use the properties of Markov-
chain dynamics [9] to show that the limiting (i.e., equi-
librium) distribution in a chain of fast states, each of
which has a slow exit with rate kslow, is reached in a
time of 0:2n2=kfast, where kfast is the slowest fast rate
and n is the number of fast states in the basin. Thus, the
slow processes out of this basin should satisfy

kfast=kslow * 0:2n2: (3)

For example, n � 4 corresponds to a fast-slow energy
barrier gap of about 0.04 eV at room temperature. If the
gap is smaller, the exit pathway from the basin could be
correlated with the entry and this correlation may be lost
when fast states are consolidated.

When an event M ! N occurs, we determine if the
barrier �Ey

M!N is less than �Eth. This is done with little
overhead using the step-and-slide (SAS) method [10],
which is the only saddle-point finding method that con-
verges by bracketing the transition-state energy Ey. Using
this method, we can evaluate whether a test value Etest

satisfies Etest <Ey without knowing Ey exactly. In
this case, we need only one SAS iteration with
Etest � EM � �Eth.

If a process is tagged as fast, the initial and final states
M and N are stored for pattern matching, i.e., when the
system revisits state M it should ‘‘recognize’’ its transi-
tion to N as a fast process and activate the appropriate
bridge potential. States M and N are defined locally and
comprise only the pattern of bonds fr0g for the nearest
neighbors nn�M ! N� of the atom(s) that move in the
transition M ! N : M 	 fr0nn�M!N�g. This formulation
decouples local states from the global state and results
in a linear increase of the storage requirement with sys-
tem size.

The second element of our method is to construct a
bridge potential between M and N [see Fig. 1(c)]. To this
end, we define a potential �VbridgeMN �x� that depends on the
position xi of the moving atom(s) i along the transition
path M ! N.�VbridgeMN �x� is constructed as in Eq. (2), with
A��max� replaced by an envelope �VbridgeMN �xi�:

�VbridgeMN �x� 	 �Vmax�VbridgeMN �xi�
XNb

i�1

�V��i�: (4)

We define a sequence of p images fx0i ; . . . ; x
p
i g along the
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approximate minimum-energy path (MEP) for the M !
N process, so that the endpoints x0i and xpi coincide with
the respective local minima. A few iterations of the SAS
method can be used to establish points along the approxi-
mate MEP. More generally, the MEP can be exactly
calculated using a chain-of-states method such as the
nudged elastic band method [11]. The bridge envelope
AbridgeMN �xi� is comprised of local contributions Al�xi� cen-
tered around each image xli (see Fig. 2):

Al�xi� 	 max
�
0; �l

�
1�

��xli�
2

w2

��
; (5)

where �xli � xi � xli, w, and �l � 1 are parameters that
control the shape of the bridge potential. If all �l � 1, the
PES is uniformly shifted and all barrier heights are
preserved. However, it is desirable to smoothen the PES
inside K [ L [M [ N so as to promote efficient equilib-
rium sampling. Based on the potential energies of the
images xli, the parameters �l can be chosen so that the
modified PES is approximately flat. The parameter w
controls the width of the bridge potential orthogonal to
the MEP. If it is too small, the bridge does not cover the
MEP valley properly and creates ‘‘channels’’ where the
system can be trapped, analogous to Fig. 1(a). If w is too
large, the bridge may affect neighboring transition states.
The spatial separation of transition states can be esti-
mated from the bond-stretch threshold q used in con-
structing the conventional boost and it can be adjusted
on the fly. In the case of an fcc crystal, w can be taken as
about half the nearest-neighbor distance. The bridge en-
velope AbridgeMN �xi� is defined as

Abridge
MN �xi� � max

l
fAl�xi�g; l � �0 . . .p�: (6)

The complete boost �V�x� is obtained by taking the
envelope of all bond and bridge terms which are active
at the particular instantaneous configuration, by merging
Eqs. (2) and (4):

�V�x� � �Vmaxmin
i
�maxfA��i�; A

bridge
i g�

XNb

i�1

�V��i�: (7)

The complete algorithm is as follows. After each event,
we start off with a low boost, i.e., �Vmax & �Eth, which
FIG. 2 (color online). Schematic shape of the bridge potential
connecting two shallow minima M� N. AbridgeMN is a function of
the distances from the instantaneous position xi to several
images xli placed along the MEP.
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preserves the correct fast dynamics. The low boost allows
accurate dynamics of the fast events, albeit with low
acceleration. As each new shallow state is encountered,
it is stored and the appropriate bridge potential is con-
structed. Eventually, the shallow states are exhausted. If
no new state is encountered during a predefined waiting
time twait, the boost strength is increased to the desired
high value, the bridges are activated, and the simulation
switches to the time scale of the slow events. We chose
twait larger than the average waiting time for a process
having the threshold barrier, i.e., twait > "�1 exp���Eth�,
where " is an appropriate prefactor. In each new state, the
simulation code performs local pattern matching against
stored states to find the applicable bridge potential terms.
With efficient state recognition algorithms, the computa-
tional overhead is generally less than 10% of the normal
simulation time for our test cases, and should remain low
for a finite number of fast processes.

To illustrate our method, we simulate kinetic phe-
nomena related to the heteroepitaxial thin-film growth
of Co on a Cu(001) surface. The interaction potential is a
slightly modified version of the tight-binding (second-
moment approximation) potential in Ref. [12], adjusted to
obtain a better fit of density functional theory calculations
of energy barriers and growth modes [13]. This system is
a prime example of the small-barrier problem, which also
occurs on other fcc(001) surfaces [6,7] where diffusion
along island edges is much faster than isolated adatom
hopping. Here, edge diffusion is about 106 faster than
adatom hopping at room temperature and trimer rotation
is about 108 times faster than adatom hopping. Fast trimer
rotation leads to a pool of 24 shallow states. Without
bridge boosting, simulations (even accelerated MD)
would be hopelessly limited by the short time scale of
edge hops.

We first investigate adatom and small island diffusion.
The energy barriers for various processes are shown in
the table with Fig. 3. Hopping along island edges is much
faster than events that lead to center-of-mass motion of
small islands, which are mainly collective shearing
mechanisms. Dimers, trimers and heptamers have a
high mobility, comparable to that of the isolated adatom.
The trimer hops via a concerted jump of two atoms, while
the heptamer hops via concerted shearing of three atoms
in the middle row. A less favorable mechanism for hep-
tamer hopping involves an edge adatom climbing on top
of the cluster and descending again. Single adatom
exchange can occur in this system [14]; however, due to
the high energy barrier (0.92 eV) it is not active on the
time scale and temperature range covered in these
simulations.

We implement bridge boosting using a threshold of
�Eth � 0:4 eV. For constructing the bridging potentials,
the MEP is approximated as a straight line, which yields a
particularly simple implementation of Eqs. (5) and (6).
After each event, a low boost of �Vmax � 0:2 eV is
128301-3



Process ∆Estatic (eV) ∆EMD (eV)

Adatom hop 0.63 0.63

Dimer hop 0.62 0.63

Adatom edge hop 0.30

Trimer rotation 0.10

Trimer hop 0.64 0.65

Heptamer hop 0.56 0.57

FIG. 3 (color online). Energy barriers �E for various diffu-
sion processes of Co=Cu�001�. Static values are obtained with
the step-and-slide method [10].
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maintained until no new process occurs for a time twait �
10�2 exp���Eth� ps. Then, the boost is increased to
�Vmax � 0:6 eV. By overcoming the small-barrier limi-
tation, we achieve boosts ranging from 104 at 450 K to
108 at 250 K and slow island diffusion is correctly
captured. Energy barriers from static calculations and
bridged, accelerated MD simulations are shown in the
table with Fig. 3 and exhibit excellent agreement.

The wealth of diffusion processes exhibited by
Co=Cu�001� is difficult to capture with traditional simu-
lation methods such as lattice-based kinetic Monte Carlo
(KMC), where the relevant rate processes must be input to
the simulation and real-space effects of mismatch-
induced strain cannot be handled easily. Accelerated
MD inherently contains all rate processes, enabling effi-
cient ‘‘prejudice-free’’ simulation in real space on experi-
mental time scales. By consolidating edge diffusion and
trimer rotation processes (shown in the table with Fig. 3),
we can tune the boost to the slow time scale of adatom
and cluster diffusion, and we can simulate growth of
Co=Cu�001� on time scales of seconds at temperatures
up to 300 K. With such capabilities, we can probe the
influence of cluster diffusion on submonolayer thin-film
morphology during growth, a topic that heretofore has
been treated with approximate rate equations [15,16] and
KMC [6,16,17].

As an example, we compared MD and KMC simula-
tions of Co=Cu�001� growth at T � 250 K, F �
0:1 ML=s, up to 0:54 ML. A five-layer substrate with
1296 atoms/layer was used for capturing correct island
densities. Because of island diffusion, in particular,
dimer mobility, the average saturation island density nx
is reduced to 70% of the value found in KMC simulations
at the same conditions with diffusion barriers that match
128301-4
ours within 5% [18]. The reduction in nx results from
island coalescence due to island mobility, which occurs in
our simulations but not in the KMC simulations [18].
Detailed results will be reported elsewhere.

In conclusion, we present a general method for allow-
ing accelerated MD simulations to cover rare-event, mul-
titime scale processes. Assuming a separation of fast and
slow time scales, the method treats fast processes as
equilibrated on the slow time scale, and consolidates
pools of ‘‘shallow’’ states detected on the fly into coarser
states. The slow dynamics is preserved, and the simula-
tion time scale can be tuned to the slow events of interest.
We applied this method to simulate the initial growth of
Co on Cu(001), where the influence of cluster diffusion on
film morphology could be observed in condensed phases.
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